«Если бы только мне было отпущено достаточно времени, чтобы закончить труд, я бы обязательно использовал это, чтобы отметить его печатью Времени, идея которого так сильно овладела мною теперь, и я бы описал людей как существ, занимающих значительно большее место, нежели то ограниченное, что отведено им в пространстве, место, которое, напротив, безмерно вытянуто во Времени, поскольку люди, как гиганты, погруженные в года и прикасающиеся одновременно к разным эпохам, разделенным таким количеством дней».
Новый «Мир»: пространство-время
В предыдущей главе мы видели, что существенным элементом теории относительности Эйнштейна от июня 1905 г. стал пересмотр понятия времени. Абсолютное универсальное Время, которое, как казалось, естественно совпадает со знакомым каждому психологическим восприятием длительности, было ниспровергнуто и заменено множественностью Относительных Времен, несогласованных между собой, что демонстрируется парадоксом близнецов. Существование этой множественности частных времен, не имеющих согласия между собой и ассоциированных с отдельными явлениями, часами или биологическими организмами, которые их измеряют или воспринимают, поставило под сомнение образ мысли, используемый в рамках ньютоновской физики.
Значительный прогресс в физическом понимании этой новой концепции множественного эйнштейновского времени был достигнут математиком Германом Минковским, который к тому же был одним из профессоров Эйнштейна в политехе Цюриха. 21 сентября 1908 г. в Кельне Минковский выступил на 80-м конгрессе немецких ученых и врачей с докладом, озаглавленным «Пространство и время». С точки зрения
«Воззрения на пространство и время, которые я намерен перед вами развить, возникли на экспериментально физической основе. В этом их сила. Их тенденция радикальна. Отныне пространству самому по себе и времени самому по себе суждено исчезнуть как теням, и лишь некоторый вид объединения обоих сможет сохранить самостоятельную реальность».
Этот «союз» пространства и времени, воплощающий единственно возможную реальность, описываемую до Эйнштейна независимыми понятиями пространства и времени, получил название «Мира», или «пространства» (
Напомним, что обычное, т. е. евклидово, пространство в том виде, в каком оно изучается в школе, представляет собой континуум с тремя измерениями (длина, ширина и высота), структура которого заключается в понятии расстояния между двумя точками. Математически расстояние между двумя точками определяется обобщением теоремы Пифагора. А именно, квадрат расстояния между двумя точками равен сумме квадратов расстояний по длине, ширине и высоте между рассматриваемыми точками{44}. Знание расстояния между любыми двумя точками позволяет определить все другие понятия обычной геометрии. Например, можно определить прямую как кратчайшую линию, соединяющую две заданные точки. Мы можем также определить угол между двумя прямыми, пересекающимися в точке А, исходя из длины сегмента, вырезаемого этими двумя линиями в круге единичного радиуса с центром в точке А. Возможный способ визуализации евклидовой геометрии трехмерного пространства заключается в том, чтобы представлять вокруг каждой точки в пространстве геометрическое место точек, которые отделены от данной точки единичным расстоянием. Другими словами, мы строим вокруг каждой точки сферу единичного радиуса. Ансамбль всех этих сфер определяет геометрическую структуру евклидова пространства (рис. 2).