Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

Эйнштейн также рассчитал амплитуду гравитационных волн, испущенных движущимся распределением напряжения-массы-энергии. Он также понял, что эти волны сами по себе являются переносчиками энергии и импульса. Отсюда он вывел, что движущийся сгусток напряжения-массы-энергии испытывает потерю энергию в результате излучения гравитационных волн в бесконечность, и в первом приближении получил выражение для ее величины.

Долгое время считалось, что процесс, предсказанный и описанный Эйнштейном{86}, соответствует столь малому рассеянию энергии, что не может быть обнаружен в реальности. В самом деле, если мы попробуем оценить энергию излучения гравитационных волн, источник которых можно изготовить на Земле (например, цилиндр в несколько тонн, вращающийся с максимально возможной скоростью, при которой он еще не начинает разрываться), то получим ничтожно малые потери энергии. Ситуация изменилась только в 1970 г. с открытием нового астрофизического объекта, способного конденсировать огромную массу в относительно малом объеме.

В этом контексте особенно важным стало открытие американскими астрономами Расселом Халсом и Джозефом Тейлором в 1974 г. двойного пульсара PSR 1913+16. Речь идет о системе, состоящей из двух нейтронных звезд, вращающихся вокруг центра масс по сильно вытянутым эллиптическим траекториям. В такой системе потеря энергии на гравитационное излучение достаточна, чтобы получить эффект, доступный наблюдению. На деле лучший способ описать то, что было обнаружено, следующий. В ноябре 1915 г. Эйнштейн убедился, что в главном приближении общая теория относительности предсказывает взаимодействие между двумя массивными объектами (посредством деформации пространства-времени между ними), описываемое обычным законом тяготения Ньютона FНьютона = Gmm’/r^2. Однако уже в следующем приближении общая теория относительности предсказывает отклонения от закона Ньютона. Грубо говоря, эти отклонения зависят от отношения v/c между скоростью на орбите и скоростью света. Вычисления этих поправок весьма сложны. Первая поправка к закону Ньютона, пропорциональная квадрату отношения v^2/c^2, была впервые получена{87} в 1917 г. После открытия двойных пульсаров стало ясно, что требуется значительное увеличение точности вычислений: вплоть до пятой степени отношения v/c.

Конечный результат вида FЭйнштейна = FНьютона (1 + v^2/с^2 + v4/с4 + v5/с5) для эйнштейновского взаимодействия между двумя нейтронными звездами был получен{88} в 1982 г. Среди всех новых эффектов, входящих в эйнштейновское взаимодействие, слагаемые порядка v5/c5 играют особую роль. Расчеты показывают, что они отвечают за ту часть гравитационного взаимодействия, которая распространяется между двумя объектами со скоростью света. Другими словами, именно они отражают существование гравитационных волн. Изучение вклада этих слагаемых в движение пульсара показывает, что они служат причиной увеличения частоты обращения системы или, что то же самое, уменьшения периода обращения. Для двойного пульсара PSR 1913+16, чей орбитальный период порядка восьми часов, это уменьшение равно в соответствии с теорией Эйнштейна 67 миллиардным долям секунды за одно обращение. Благодаря очень точным наблюдениям, проводимым в течение нескольких лет, стало возможным измерить уменьшение орбитального периода PSR 1913+16, и результат хорошо совпал, с точностью в несколько десятых процента, с теоретическим предсказанием. Это совпадение – одно из самых красивых подтверждений теории Эйнштейна. Оно также стало первым подтверждением того, что деформации пространственно-временного желе распространяются (в данном случае между двумя нейтронными звездами) со скоростью света.

В 1960-х гг. к ученым, в частности к Джозефу Веберу, пришло понимание того, что возможно, в принципе, детектировать на Земле прибытие гравитационных волн, испущенных в далеких концах Вселенной. Гравитационная волна – это волна деформации пространственно-временной геометрии, распространяющаяся от источника со скоростью света. Поскольку пространственно-временное желе обладает огромной жесткостью, все мыслимые источники (включая самые мощные, такие как две сливающиеся черные дыры) создают крайне малые деформации пространственно-временной геометрии. Однако для лучшего понимания того, как могут выглядеть «волны деформации геометрии», мы последуем Георгию Гамову{89} и представим себе гравитационные волны такой большой амплитуды, чтобы человек мог их воспринимать непосредственно. На Земле мы привыкли использовать для описания окружающего пространства евклидову геометрию, где работает теорема Пифагора, притом для треугольников любого размера, и где сумма углов треугольника равна сумме двух прямых углов. Исходя из такой «недеформированной» или, как говорят, «плоской» ситуации, давайте проследим, как Гамов описывает внезапное прибытие гигантской волны деформации геометрии на британский морской курорт.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука