Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

Деформированное пространство-время, таким образом, определяется заданием для каждой точки такого рода деформированных песочных часов. На рис. 8 можно увидеть графическое представление этой идеи, а также сравнить ее с недеформированным случаем пространства-времени специальной теории относительности (см. рис. 3). Затем Эйнштейн понял, что такое деформированное пространство не может быть покрыто обычной квадратной сеткой, подобной той, что мы видим в школьных тетрадях, т. е. с помощью четырех обычных координат (длины, ширины, высоты и времени), использованных им в специальной теории относительности. Как и в случае поверхности Земли, нужно было использовать более общие координаты (аналогичные долготе и широте для деформированной сферы, см. рис. 7). Поскольку пространство-время является четырехмерным, необходимо иметь четыре координаты, чтобы точно определить какое-либо событие. Можно обозначить эти координаты различными способами, из которых наиболее распространенные: (x, y, z, t), (x1, x2, x3, x4) или (x0, x1, x2, x3).

Эйнштейн обнаружил (хотя и после долгих лет блужданий, колебаний и сомнений), что в выборе этих четырех координат имеется полная математическая свобода или, другими словами, что никакой конкретный способ фиксации точек пространства-времени не является заведомо предпочтительным. Исходя из этого он пришел к следующему выводу: законы физики должны иметь одинаковый вид в любой системе координат. Эйнштейн назвал этот постулат принципом общей относительности, так как изначально думал, что он является обобщением принципа относительности 1905 г., который ограничивался рассмотрением систем координат, используемых наблюдателями при равномерном относительном движении{70}. Введение этого постулата позволило очень сильно ограничить допустимую форму законов «релятивистской гравитации» и, таким образом, приблизило Эйнштейна к его самому замечательному открытию, которое Дж. Томсон, Дирак и многие другие физики считали «величайшим достижением в истории человеческой мысли», а именно к созданию общей теории относительности или теории гравитации Эйнштейна.

Итак, первый этап создания общей теории относительности привел к утверждению, что хроногеометрия деформированного пространства-времени задается структурой, представленной на рис. 8: набор событий, удаленных от заданного на бесконечно малый (положительный) квадрат интервала ^2, суть деформированные песочные часы (или на математическом языке – обобщенный гиперболоид). Для явного описания этой структуры необходимо в каждой точке пространства-времени определить математический объект, обозначаемый g и называемый хроногеометрическим или метрическим тензором. Этот тензор представляет собой набор из 10 коэффициентов, которые определяют форму теоремы Пифагора – Эйнштейна в произвольной системе координат{71}. Отметим, что по счастливому стечению обстоятельств символ g может одинаково подразумевать как геометрию пространства-времени, так и гравитацию.

<p>Закон упругости пространства-времени Эйнштейна</p>

Чтобы более наглядно понять смысл теории гравитации Эйнштейна, вспомним теорию упругости, созданную британским ученым Робертом Гуком. Гук был одним из самых плодотворных научных деятелей XVII в. Он внес существенный вклад во впечатляющее количество научных областей и, кроме того, в течение долгого времени был секретарем Лондонского королевского общества. Его работы предвосхитили некоторые открытия Ньютона (касательно общих законов динамики и поведения 1 / r^2 закона тяготения). К сожалению для него, Ньютон, который был гением, но отличался весьма подозрительным и вспыльчивым нравом, игнорировал его достижения и делал все, чтобы принизить важность его работ. Наверное, Ньютон был бы в ярости, увидев такую интерпретацию теории гравитации Эйнштейна (вытеснившую его собственную), которую мы собираемся сделать, используя обобщение закона упругости Гука!

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука