Читаем Мир по Эйнштейну. От теории относительности до теории струн полностью

После получения уравнений, связывающих пространственно-временные координаты одного и того же события в двух разных системах отсчета, Эйнштейн обсуждает их физическую интерпретацию, а затем выводит модифицированную форму закона сложения скоростей в своей новой теории. Наконец, он убеждается, что в новом законе «добавление» произвольной скорости, «не превышающей пороговой», к скорости света по-прежнему дает скорость, равную (по абсолютной величине) скорости света. Таким образом, круг замыкается: Эйнштейн демонстрирует совместимость принципа относительности и того принципа, в соответствии с которым свет всегда распространяется с одинаковой скоростью. Кроме того, все это теоретическое рассуждение (так же, как и остальная часть статьи) делает абсолютно «излишним» введение понятий «световой эфир» и «абсолютное пространство». Эйнштейн больше к этому не возвращается, однако такое простое замечание подписывает смертный приговор понятиям, считавшимися «очевидными» всеми его современниками.

На этом мы завершаем обзор первой части июньской статьи Эйнштейна 1905 г., которую он определяет для себя как «кинематическую», т. е. направленную на исследование свойств пространства, времени и движения. Во второй части, имеющей название «Раздел электродинамики», он показывает, как применение его нового подхода изучения свойств пространства и времени к уравнениям электромагнетизма Максвелла позволяет свести все проблемы электромагнетизма и оптики, связанные с исследованием тел в движении, к серии проблем с неподвижными телами. Попутно он получает ряд важных новых результатов. В заключение было показано, что принцип относительности требует изменения основного закона динамики Ньютона (связывающего силу, действующую на тело, с его массой и ускорением). В частности, Эйнштейн выводит, что обычное выражение кинетической энергии движущегося тела, т. е. энергии, связанной со скоростью движения тела, необходимо модифицировать, когда тело движется с большой скоростью. Он устанавливает, что кинетическая энергия возрастает до бесконечности, по мере того как скорость тела приближается к скорости света. Это позволяет сделать вывод, что скорость света является предельной и недостижимой. Эйнштейн, наконец, нашел ответ на вопрос, который не давал ему покоя с 16 лет! Ни один наблюдатель не может поймать луч света. Скорость наблюдателя обязательно меньше скорости света. И даже если его скорость очень близка к скорости света, то он будет видеть свет убегающим от него с неизменной скоростью 300 000 км/с. Бесполезное занятие – бежать за светом.

<p>Расстроенное время</p>

Вернемся к существу концептуального нововведения теории относительности, сформулированной Эйнштейном весной 1905 г. Как Эйнштейн сказал Бессо, встретив его на следующий день после их решающего обсуждения: «Спасибо. Я полностью разрешил проблему. Разгадка была в анализе концепции времени. Время не может быть определено универсальным способом, поскольку существует неразрывная связь между временем и скоростью распространения сигналов».

Именно новое понимание концепции времени, предложенное Эйнштейном, отличает его вклад от всего, сделанного другими учеными (в том числе Лоренцом и Пуанкаре) в области электродинамики движущихся тел. Для Лоренца и Пуанкаре существовало лишь одно «действительное время» – абсолютное время Ньютона, с которым они были знакомы всегда. Другие переменные, напоминающие время, но связанные с движущейся системой отсчета, оставались лишь вспомогательными математическими приемами. Это подтверждается тем, что пишет Эйнштейн в 1907 г.:

«Но, что удивительно, оказалось, чтобы преодолеть описанную трудность, нужно было лишь осознать концепцию времени с большей степенью ясности. Было достаточно осознать, что вспомогательная величина, введенная Лоренцом и которую он назвал “местным временем”, могла быть определена как самое натуральное, обычное “время”», а также тем, что писал сам Лоренц в 1915 г.:

«Основной причиной моей неудачи [в открытии теории относительности] было то, что я цеплялся за мысль, что только переменная t может рассматриваться как истинное время и что мое локальное время t’ может рассматриваться лишь как вспомогательная математическая величина».

Что касается Пуанкаре, здесь ситуация более тонкая, поскольку он первым понял, еще в 1900 г., что «локальное время» Лоренца t’ является чем-то большим, нежели удобная вспомогательная величина. Пуанкаре действительно понял, что, если движущиеся наблюдатели решили бы синхронизировать свои часы путем перекрестного обмена световыми сигналами, предполагая одинаковую длительность передачи сигналов между двумя наблюдателями в обоих направлениях, то их часы показали бы, по крайней мере в первом приближении, «локальное время» Лоренца t’. Несмотря на это важное понимание, Пуанкаре следующим образом комментировал процедуру синхронизации в 1904 г.{26}:

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука