Чтобы понять, почему расширение вызывает остывание, рассмотрим газ, заключенный в большой ящик. Молекулы газа можно представить в виде маленьких шариков, которые отскакивают от стенок ящика. Вообразите теперь, что эти стенки раздвигаются. Как повлияет их удаление на молекулы? Если вы на тренировке бросите теннисный мяч в стену, он отлетит к вам с той же скоростью. Но представьте на мгновение, что стена от вас удаляется. Скорость мяча относительно стены будет тогда меньше, и он отскочит назад медленней, чем вы его бросили. Аналогично и молекулы в расширяющемся ящике будут замедляться при каждом отскоке от стены. Температура пропорциональна средней энергии молекул, и, следовательно, в ходе этого процесса она будет убывать. Конечно, в расширяющейся Вселенной нет движущихся стен, но частицы отскакивают друг от друга, и это точно так же влияет на температуру. Увеличиваясь, Вселенная становится все холоднее и холоднее. А значит, чем дальше мы отступаем в прошлое, тем горячее она должна быть, если же продолжить экстраполяцию до самой сингулярности, Вселенная становится бесконечно горячей.
При температурах свыше нескольких сотен градусов Кельвина[20] связи, удерживающие атомы в молекулах, уже не способны противостоять теплу, и молекулы распадаются. Дальнейшее повышение температуры ведет к постепенному разрушению атомов. Сначала, около
Помимо частиц материи, из которых состоят атомы, первичный огненный шар содержал также огромное количество квантов излучения — фотонов. Фотоны — это пакеты электрической и магнитной энергии; из них состоит обычный видимый свет. Движущиеся заряженные частицы испускают и поглощают фотоны, поэтому довольно быстро устанавливается равновесие, при котором фотоны поглощаются в том же темпе, что и излучаются. Чем выше температура, тем больше плотность энергии фотонов в равновесии. Кажется, что рецепт горячего космического супа выглядит очень просто: раздробите все на самые мелкие части, перемешайте и не скупясь приправьте фотонами. Однако есть в нем и кое-что еще.
Чем дальше мы продвигаемся назад во времени, тем энергичнее становятся частицы, тем теснее им и тем чаще они сталкиваются друг с другом. Чтобы понять состав огненного шара, надо знать, что случается при таких высокоэнергичных соударениях. Сталкивать элементарные частицы — любимое занятие ученых, специализирующихся на физике высоких энергий. Для этого строятся колоссальные агрегаты, называемые ускорителями, где частицы разгоняют до чудовищных энергий, позволяют им врезаться друг в друга и смотрят, что получится. Это гораздо увлекательнее, чем наблюдать за столкновением бильярдных шаров, поскольку частицы при столкновении часто меняют свой тип, как если бы красный и синий шары при столкновении превращались в желтый и зеленый. Количество частиц также подвержено изменениям: две исходные частицы могут породить фейерверк из десятков новых, разлетающихся из точки столкновения. Подобные события повсеместно происходили в первые мгновения после Большого взрыва.
В таких столкновениях нельзя точно предсказать, что должно случиться. Существует множество возможных исходов, и физики, используя квантовую теорию, вычисляют их вероятности. Но это все, что можно сделать: в квантовом мире нет места определенности. Диапазон возможного ограничивается лишь несколькими
Для каждого типа частиц есть античастицы с такой же массой и противоположным электрическим зарядом. Частицы и античастицы часто рождаются парами. Например, два фотона с энергиями больше той, что соответствует массе электрона (по формуле