Он применил способ прерывистой съёмки, снимая не 16–18 кадров в секунду, как это делается при обычных немых киносъёмках, а только несколько кадров в минуту. Отпечатанная лента демонстрировалась на экране с обычной скоростью. Таким образом, перед зрителем предстали бактерии, развитие которых оказалось ускоренным в десятки раз. На глазах у зрителей бактерии очень быстро делились и образовывали колонию. Когда в питательную среду вводился вредно действующий на бактерии антибиотик — пенициллин, то было видно, как бактерии прекращали размножаться, вырастая в огромные, занимающие весь экран, толстые нити и шары, и, наконец, лопались и погибали. Этим методом проф. Троицкий вскрыл и причину приобретения микробами нечувствительности к пенициллину, что иногда снижает эффективность его лечебного действия. Оказалось, что у некоторых разбухающих и гибнущих под влиянием пенициллина бактерий остаётся небольшая часть клетки, приобретшая стойкость к антибиотику. Эта часть способна размножаться в среде, к которой добавлен пенициллин, и передаёт по наследству потомству свои вновь приобретённые свойства. Этим интересным опытом была наглядно доказана приложимость к бактериям общебиологического закона мичуринского учения о наследовании благоприобретённых признаков. Было опровергнуто мнение американских микробиологов — вейсманистов, считавших, что нечувствительность к антибиотику зависит от выживания единичных предсуществовавших в культуре стойких микробов.
На этом примере мы видим, какую помощь в научно-исследовательской работе микробиолога может оказать микрокиносъёмка. С каждым годом в Советском Союзе этот метод находит все большее и большее применение. Во многих институтах организованы специальные отделы и лаборатории по киносъёмке микроскопических объектов.
Известно, что в микроскоп обычно рассматривают более или менее прозрачные объекты в проходящем свете. Направляемый зеркальцем микроскопа пучок света проходит через конденсор — собирательную линзу, затем через изучаемый объект и оптическую систему микроскопа и попадает в глаз наблюдателя (рис. 24 и 25).
Но как рассмотреть непрозрачный объект? Как исследовать, например, живых микробов, плавающих в крови сосуда животного?
Оказывается, и эта задача была разрешена физиками, изобретшими так называемый опак-иллюминатор, или «вертикальный иллюминатор», где объект рассматривается уже не в проходящем свете, а в ярком пучке света, падающего на непрозрачную поверхность исследуемого объекта. Положив на предметный столик такого микроскопа лапки живой крысы, можно наблюдать за оживлённым движением мельчайших паразитов — микробов-трипанозом, плавающих в её крови. Сделав отверстие в скорлупе заражённого вирусом куриного яйца и удалив из него оболочки зародыша, можно изучать поражения, возникающие под влиянием развивающегося в них вируса.
Много различных усовершенствований микроскопа получила к настоящему времени наука. Тут и исследование в «тёмном поле», где только боковые лучи освещают мельчайшие частицы, взвешенные в капле жидкости (рис. 26), тут и микроскопия в невидимом ультрафиолетовом свете, вдвое увеличивающем разрешающую способность объектива, и флюоресцентная микроскопия, основанная на превращении падающих на объект ультрафиолетовых лучей в видимый свет, который излучается флюоресцирующим объектом.
Все эти методы широко раздвинули границы оптической микроскопии, но ни один из них не дал возможности увидеть объекты, размеры которых меньше, чем две десятых микрона (0,2 микрона). Наиболее крупный вирус — вирус оспы — не превышает 0,175 микрона. Следовательно, все вирусы оставались за пределами видимости в световые микроскопы.
Правда, действительному члену Академии медицинских наук СССР проф. М. А. Морозову удалось разглядеть в обычный микроскоп при помощи изобретённого им метода серебрения элементарные тельца вируса оспы и ряд других вирусов. Его метод вошёл в мировую практику, но этим дело и ограничилось. До начала 50-х годов двадцатого столетия вирусы оставались невидимыми, несмотря на все ухищрения учёных. О размерах вирусов приходилось судить только косвенным образом, применяя для этого мощнейшие центрифуги, делавшие десятки тысяч оборотов в минуту, в которых по скорости оседания вирусных частиц можно было вычислить их размер, или путем фильтрования через ультрафильтры-сита с порами строго определённой величины. Отчего же нельзя было увидеть в обычный световой микроскоп вирусные частицы? Оттого, что длина волн видимого света больше вирусной частицы. Встречая на своём пути столь мелкое препятствие, световая волна не отражается, а огибает эту частицу. Световые волны проходят мимо вирусов, как бы не замечая их. А если объект не мешает распространению волн, то и сам он остаётся невидимым.
Василий Кузьмич Фетисов , Евгений Ильич Ильин , Ирина Анатольевна Михайлова , Константин Никандрович Фарутин , Михаил Евграфович Салтыков-Щедрин , Софья Борисовна Радзиевская
Приключения / Публицистика / Детская литература / Детская образовательная литература / Природа и животные / Книги Для Детей