Читаем Микромеханические системы и элементы полностью

Когда скорость тела сенсора изменяется, ИМ через пружину так же побуждается последовать этим изменениям. Сила, воздействующая на ИМ, является причиной изменения ее движения, поэтому пружина изгибается, и расстояние между телом и ИМ изменяется пропорционально ускорению тела. Рабочие принципы сенсоров различаются в зависимости о того, по какому принципу определяется движение между телом и ИМ.

В емкостном сенсоре тело и ИМ изолированы друг от друга, и их емкость, или емкостной заряд, измеряется. Когда дистанция между ними уменьшается, емкость увеличивается, и электрический ток идет по направлению к сенсору.

В случае, когда расстояние увеличивается, наблюдается обратная ситуация: сенсор преобразует ускорение тела в электрический ток, заряд или напряжение. Превосходные характеристики рассматриваемых датчиков основаны на технологии емкостного измерения и хорошо подходят для определения малых изменений в движении.

Чувствительный элемент для определения ускорения сделан из монокристального кремния и стекла. Это обеспечивает сенсору исключительную надежность, высокую точность и устойчивость показаний по отношению к воздействию времени и температуры. Как правило, чувствительный элемент датчика с диапазоном измерений ±1 g выдерживает как минимум 50 000 g ускорений (1 g = ускорение, вызванное силой тяжести Земли). Датчик измеряет ускорение как в положительном, так и в отрицательном направлении и чувствителен к статическому ускорению и вибрации.

«Сердцем» акселерометра является симметричный чувствительный элемент (ЧЭ), изготовленный по технологиям объемной микромеханики, у которого есть два чувствительных конденсатора. Симметрия ЧЭ уменьшает зависимость от температуры и чувствительности по оси и улучшает линейность. Герметичность датчика обеспечивается за счет анодного соединения пластин друг с другом. Это облегчает корпусирование элементов, повышает надежность и позволяет использовать газовое затухание в сенсорном элементе.

<p>Концепция гетерогенной Chip-on-MEMS-интеграции МЭМС-элементов и интегральных микросхем</p>

При производстве трехосевого акселерометра применяют новую концепцию гетерогенной интеграции для объединения чувствительного элемента МЭМС и микросхемы (ASIC): ЧИП на МЭМС или CoM (Chip-on-MEMS).

Эта концепция основана на комбинации инкапсулированных на уровне пластины 3D-МЭМС-структур, технологии корпусирования на уровне пластины и технологии чипа на пластине. Все указанные процессы уже существуют на протяжении нескольких лет. Их комбинация позволяет решать наиболее сложную проблему корпусирования: как экономически эффективно совместить МЭМС-элементы и интегральные микросхемы. Исходя из описанной концепции, технология включает в себя следующие шаги: перераспределение и изоляция слоев на МЭМС-пластине, нанесение 300 микронных шариков припоя, установка на МЭМС-пластину микросхем, пассивация зазоров между микросхемами и МЭМС, тестирование пластины с МЭМС-устройствами, резка пластины и финальное тестирование и калибровка сенсоров после резки.

На рис. 1.6 и 1.7 (выше) представлены симметричный чувствительный элемент емкостного акселерометра и вид установки на МЭМС-пластину интегральных микросхем.

Благодаря технологии CoM можно получить полноценное функциональное МЭМС-устройство с размером корпуса по периметру 4x2 мм и высотой 1 мм. Данная технология полностью готова для производства датчиков, как для небольших партий, так и в промышленных масштабах.

В табл. 1.2 представлены технические характеристики емкостного трехосевого акселерометра.

Таблица 1.2. Технические характеристики емкостного трехосевого акселерометра

Благодаря отличным характеристикам по стабильности и вибрационной надежности рассматриваемые акселерометры могут успешно применяться в следующих сферах:

• электронный контроль стабильности движения контролируемого устройства;

• система помощи при старте двигателя на подъеме;

• электронный стояночный тормоз;

• электронная защита от переворачивания;

• регулировка подвески;

• контроль углов наклона;

• встроенные инерциальные системы;

• применение в промышленности для различных устройств.

<p>1.4. Производители МЭМС-акселерометров</p>

Существует много способов производства и применения микроэлектромеханических сенсоров. В качестве производственных площадок можно отметить немецкие предприятия, входящие в состав Ассоциации Silicon Saxony e.V., институт Fraunhofer, корпорации Honeywell International Inc. и Analog Devices Inc. (США), Московский государственный институт электронной техники (МИЭТ), a также компании-производители радиоэлектронных компонентов, расположенные в разных странах мира.

Работа организуется по следующим актуальным направлениям:

• выработка рекомендаций для заказчиков по применению тех или иных сенсоров мировых производителей при производстве российских систем;

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки