Читаем Микромеханические системы и элементы полностью

Термин гироскоп происходит от «наблюдатель вращений» (от греч. gyros – круг, gyrou – кружусь, вращаюсь и scopeo – смотрю, наблюдаю), предложен в 1852 году французским ученым Леоном Фуко при изобретении прибора для демонстрации вращения Земли вокруг своей оси. Фуко поместил вращающийся маховик в некоторое устройство, называемое кардановым подвесом, поэтому долгое время слово гироскоп использовалось для обозначения быстро закрученного вращающегося симметричного твердого тела. По закону ньютоновой механики, скорость поворота оси гироскопа в пространстве обратно пропорциональна его собственной угловой скорости, и, следовательно, ось быстро закрученного гироскопа поворачивается столь медленно, что в отдельном интервале времени конструкцию используют в качестве указателя неизменного направления в пространстве. И хотя опыт с первым гироскопом оказался не вполне удачным, морские и военные применения гироскопов усовершенствовали первоначальную конструкцию Фуко весьма быстрыми темпами.

Примерно через полтора века гироскопами уже называли широкий класс приборов; сейчас термин гироскоп используется для названия устройств, содержащих материальный объект, совершающий быстрые периодические движения. В результате этих движений устройство становится чувствительным к вращению в инерциальном пространстве. При таком понимании слова гироскоп для него уже необязательно наличие симметричного массивного быстро вращающегося ротора, подвешенного без трения таким образом, чтобы его центр масс совпадал с центром подвеса.

Гироскопы разделяют на измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения параметров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т. д.).

<p>1.1.1. Самый простой гироскоп</p>

Простейшим гироскопом, с необыкновенными свойствами которого мы знакомимся еще в детстве, является волчок. Парадоксальность поведения волчка заключается в его сопротивлении изменить направление оси вращения. При действии внешней силы ось волчка (гироскопа) двигается в направлении, перпендикулярном вектору силы. Поэтому вращающийся волчок не падает, а его ось описывает конус вокруг вертикали; это движение называется регулярной прецессией тяжелого твердого тела.

Медленное движение вектора собственного кинетического момента гироскопа под действием моментов внешних сил называется прецессией гироскопа и описывается векторным уравнением

w x H = M.

Здесь w – вектор угловой скорости прецессии, H – вектор собственного кинетического момента гироскопа, M – ортогональная к H составляющая вектора момента внешних сил, приложенных к гироскопу. Момент сил, приложенных со стороны ротора к подшипникам оси собственного вращения ротора, возникающий при изменении направления оси, называют гироскопическим моментом. Погрешность гироскопа измеряется скоростью ухода его оси от первоначального положения. Свободный гироскоп функционирует идеально лишь в том случае, если внешний момент M равен нулю.

<p>1.1.2. Виды гироскопов и практическое применение</p>

Высокоточный гироскоп может уверенно (с погрешностью 5 %) измерять скорость вращения Земли, однако если бы этот гироскоп оказался на Луне, то ему не удалось бы обнаружить вращение Луны, происходящее в 28 раз медленнее вращения Земли. Во времена Фуко не существовало средств для раскрутки ротора гироскопа до скоростей тысячи оборотов в минуту. Только в конце XIX века было предложено использовать для разгона и поддержания вращения ротора гироскопа электрический мотор, тем самым обеспечив возможность получения больших значений кинетического момента гироскопа H и его постоянства в течение неограниченного промежутка времени.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки