Читаем Методика преподавания математики в начальной школе полностью

Неполная индукция – умозаключение, в котором на основании того, что некоторые объекты класса обладают определенным свойством, делают вывод, что этим свойством обладают все объекты данного класса.

Неполная индукция не является дедуктивным умозаключением.

Рассмотрим как образец пары выражений:

3 + 5 и 3 x 5; 2 + 7 и 2 x 7; 4 + 8 и 4 x 8. Можно с уверенностью утверждать, что сумма этих чисел меньше произведения. На основании этого можно сделать вывод, что этим свойством обладают все натуральные числа:

( а,в Є N)[а + в < а x в].

Но это утверждение ложно, т.к. можно привести контрпример: числа 1 и 2 – натуральные, но их сумма больше, чем произведение 1 + 2 < 1 x 2. Значит, к выводам, полученным с помощью неполной индукции, важно относится осторожно. Они носят характер предположения (гипотезы) и нуждаются в проверке. Их доказывают или опровергают.

Таким образом, неполная индукция и дедуктивные умозаключения взаимосвязаны. Все математические утверждения (теоремы, аксиомы, определения, правила), используемые в дедуктивных умозаключениях, часто являются результатом индуктивного обобщения. А индуктивного умозаключения расширяют математические знания.

В третьем случае используется аналогия (греч. – «сходство, соответствие»).

Аналогия – умозаключение, в котором на основании сходства объектов по некоторым признакам и при наличии другого признака у одного из них, делается вывод о наличии этого признака у другого объекта.

Термином «объект» называются реальные предметы, модели, рисунки, числовые и буквенные выражения, задачи. Аналогия помогает открывать новые и использовать усвоенные способы действия в измененных условиях. Выводы по аналогии также требуют доказательства или опровержения, т.к. носят характер предположения.

Например, при изучении понятия о десятичной системе счисления, учащиеся изучают названия классов и разрядов. Изучая класс единиц, дети знакомятся с разрядами единиц, десятков, сотен, в классе тысяч – единицами тысяч, десятками тысяч, сотнями тысяч. По аналогии они уже могут назвать разряды классов миллионов и миллиардов.

Знакомясь с дистрибутивным свойством умножения, учащиеся используют его при выполнении умножения двузначных чисел:

23 x 4 = (20 + 3) x 4 = 20 x 4 + 3 x 4 = 80 + 12 = 92

По аналогии они выполняют умножение трехзначных чисел:

123 x 4 = (100 + 20 + 3) x 4 = 100 x 4 + 20 x 4 + 3 x 4 = 400 + 80 + 12 = 492

По аналогии они выполняют умножение четырехзначных чисел:

5123 x 4 = ……………..

А далее делается обобщение: выводится алгоритм умножения многозначного числа на однозначное – неполная индукция.

Практическая работа

Выделите в перечисленных умозаключениях посылки и заключения.

а) Если запись числа оканчивается нулем, то оно кратно 10. Число 260 оканчивается нулем. Следовательно, число 260 кратно 10.

б) Если запись числа оканчивается нулем, то оно кратно 10. Если число кратно 10, то оно четное. Следовательно, если запись числа оканчивается 0, то оно четное.

в) Если запись числа оканчивается нулем, то оно кратно 10. Число 263 не кратно 10. Следовательно, оно не оканчивается нулем.

II.      Согласно определению, в дедуктивном умозаключении посылки и заключение находятся в отношении логического следования. Это означает, что в нем всегда из истинных посылок следует истинное заключение.

Важно знать, как строить такие умозаключения и проверять их правильность.

В логике считают, что правильность умозаключения определяется его формой и не зависит от его конкретного содержания входящих в него утверждений. Математика предлагает такие правила, соблюдая которые можно строить дедуктивные умозаключения. Эти правила называются правилами вывода или схемами дедуктивных умозаключений:

1. А(х) => В(х), А(а) – правило заключения;

В(а)

2. А(х) => В(х), В(а) – правило отрицания;

      А(а)

3. А(х) => В(х), В(х) => С(х) – правило силлогизма.

А(х) => В(х)

В правиле заключения обозначены две посылки: А(х) => В(х) и А(а). Первую называют общей (это может быть определение, правило, теорема), а вторую – частной (она получается из условия А(х) при х = а).

Например:

Если запись числа х оканчивается цифрой 5, то число х делится на 5. Запись числа 135 оканчивается цифрой 5. Следовательно, число 135 делится на 5.

Данное умозаключение можно записать так – А(х) => В(х), А(а), где

А(х) – общая посылка – «запись числа х оканчивается цифрой 5», а

В(х) – «число х делится на 5»;

А(а) – частная посылка – «число 135 оканчивается цифрой 5», при х = 135;

Перейти на страницу:

Похожие книги

Человек 2050
Человек 2050

Эта книга расскажет о научных и социальных секретах – тайнах, которые на самом деле давно лежат на поверхности. Как в 1960-х годах заговор прервал социалистический эксперимент, находившийся на своём пике, и Россия начала разворот к архаичному и дикому капитализму? В чем ошибался Римский Клуб, и что можно противопоставить обществу "золотого миллиарда"? Каким должен быть человек будущего и каким он не сможет стать? Станет ли человек аватаром – мёртвой цифровой тенью своего былого величия или останется образом Бога, и что для этого нужно сделать? Наконец, насколько мы, люди, хорошо знаем окружающий мир, чтобы утверждать, что мы зашли в тупик?Эта книга должна воодушевить и заставить задуматься любого пытливого читателя.

Евгений Львович Именитов

Альтернативные науки и научные теории / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Кризис
Кризис

Генри Киссинджер – американский государственный деятель, дипломат и эксперт в области международной политики, занимал должности советника американского президента по национальной безопасности в 1969—1975 годах и государственного секретаря США с 1973 по 1977 год. Лауреат Нобелевской премии мира за 1973 год, Киссинджер – один из самых авторитетных политологов в мире.Во время работы доктора Киссинджера в администрации президента Ричарда Никсона велась регулярная распечатка стенограмм телефонных разговоров. С 2001 года стенограммы, хранящиеся в Национальном архиве США, стали общедоступными.Эти записи и комментарии к ним Генри Киссинджера передают атмосферу, в которой принимались важные решения, и характер отношений, на которых строилась американская политика.В книге обсуждаются два кризиса – арабо-израильская война на Ближнем Востоке в октябре 1973 года и окончательный уход из Вьетнама в 1975 году.В формате PDF A4 сохранен издательский макет книги.

Антон Цвицинский , Генри Киссинджер , Джаред Мейсон Даймонд , Руслан Паушу , Эл Соло

Фантастика / Экономика / Современная русская и зарубежная проза / Научно-популярная литература / Образовательная литература