Близко к этой задаче стоит используемый в инженерной практике энергетический метод. С его помощью, в частности, производится оценка совершенства рабочих органов машин, механизмов, передачи энергии и оценка энергетических систем. В строительной промышленности энергетический метод исследования был применен для оценки рабочих органов машин и комплексной механизации строительства.
Специфика горного производства и задача выбора оптимального технологического потока с учетом свойств горных пород, горной массы, кондиции готового продукта для карьеров не позволяют использовать указанные выше методы в известном виде. В данной работе для создания энергетического метода в горном деле, отвечающего поставленной задаче, была использована только известная в других отраслях терминология.
По терминологии физики энергия равна это работе, совершаемой под действием силы, т.е. произведение силы на перемещение по направлению силы.
Для нашего случая силой является величина сопротивления природной среды определяемой свойствами горных пород, т.е. сила равная величине сопротивления разрушению массива взрывным или механическим способом, перемещению, отвалообразованию или переработке.
Величина затрат энергии оцениваются составом разрушенной горной массы по крупности, характеризуемой средним размером куска породы, коэффициентом разрыхления горной массы и величиной развала массива после взрыва, расстоянием, высотой и сопротивлением её перемещения.
Для инженерного расчета затрат энергии на разрушение горной породы при бурении, взрывном или механическом дроблении используется простой для измерения показатель - предел прочности породы на сжатие, на выемочно-погрузочные работы - удельное сопротивление пород копанию, на перемещение - основное сопротивление движению транспорта и т.п.
Взаимосвязь результатов разрушения горного массива соответствующей трещиноватости с последующими технологическими процессами осуществляется через степень дробления пород, которая в реальных условиях выражается отношением среднего размера отдельности в массиве к среднему размеру куска разрушенной горной массы, В свою очередь средний размер куска разрушенной горной массы ограничивается параметрами рабочего органа выемочно-погрузочной машины.
При расчете затрат энергии идущего на изменение состояния горной породы по процессам зависит от параметров используемого оборудования.
Взаимосвязь управляемых параметров смежных процессов технологического потока может быть схематично представлена в виде:
(сж., Е, do , )
где сж., Е, do, – соответственно: предел прочности пород на сжатие, модуль упругости, средний размер отдельностей и плотность пород в горном массиве;
n - степень дробления пород при взрыве, равная отношению среднего размера, отдельностей в массиве Do к среднему размеру куска разрушенной породы dср.;
q - удельный расход взрывчатого вещества, q = f (сж., Е, do , , n);
kf - удельное сопротивление разрыхленного массива копанию;
Знак "" означает прямое, а знак "" - прямое и обратное влияние параметров процессов технологического потока.
Таким образом, определение величины технологического энергопоглощения по предлагаемому методу необходимого для заданного изменения состояния и пространственного положения объекта, требует знания базовых характеристик пород горного массива (предела прочности пород на сжатие, среднего размера отдельности, плотности пород, удельного сопротивления пород копанию), которые легко определяются уже на стадии геологоразведочных работ. Поэтому этот метод наиболее приемлем при обосновании целесообразности разработки месторождений при проектировании, реконструкции или перевооружении карьеров
Энергопоглощение представляет собой величину энергии, количество которой теоретически необходимо и достаточно для изменения состояния или положения объекта разработки в процессах горного производства.
Оно всегда меньше фактического расхода энергии, а величина такого различия характеризует уровень совершенства применяемой технологии и техники, что позволяет оценить имеющиеся резервы и наметить пути их реализации в направлении создания энергосберегающих технологий. Метод целесообразен и при исследовательских работах по поиску рациональных вариантов комплексной механизации технологических потоков и определению рациональных параметров технологических процессов горного производства.
Глава 2
Теоретические основы расчета энергозатрат при открытой добыче полезных ископаемых
1.2 Общие положения
Любой продукт определённого качества, в том числе и продукт горного производства, требует для своего создания определённого количества энергии. Пользуясь известными понятиями, в производстве участвует живой и овеществлённый (машины, материалы, энергия и т.п.) труд.
Чем больше вооружён живой труд овеществлённой энергией, тем выше производительность труда. Сейчас в мире на одного человека расходуется 2,24 тонны условного топлива, к 2015 году прогнозируется увеличение до 2.58 тонн.