Порошковая металлургия тесно связана с электротехникой. Нити накала электрических ламп, радиоламп, рентгеновских трубок должны работать при температуре 2–3 тысячи градусов и иметь достаточную механическую прочность. Из вольфрама, молибдена и тантала методом порошковой металлургии и готовят эти детали.
Металлокерамические резцы, появившиеся в последние годы, произвели подлинную революцию в обработке металлов резанием. Еще бы, они позволили увеличить скорость резания в десятки раз! Проникнув в горное дело, они и там позволили значительно ускорить проходку скважин. А ведь в их состав входят карбиды — соединения с углеродом самых тугоплавких металлов. Так, карбид титана, обычный компонент таких резцов, плавится при температуре лишь в 3140 градусов, карбиды циркония и ниобия — при 3500 градусах, карбид тантала — при 3380 градусах. Конечно, только порошковая металлургия позволяет получить узкие, наплавляемые на державки резцов пластинки, в состав которых входят эти карбиды.
Твердые сплавы, изготовленные из порошков карбидов, позволили повысить скорость не только обработки металлов резанием. Из них делают штампы для прессов и фильеры для волочения стальной проволоки, сверла и резьбовые калибры и т. д.
И во всех этих случаях твердые сплавы с честью выдерживают испытание. Металлокерамический штамп для производства безопасных бритв выдерживает до 2 млрд. штамповок, когда обычный стальной штамп приходится менять после 15 млн. штамповок. Срок службы твердосплавных валков в 100 раз дольше, чем простых стальных. Стальная фильера до износа позволяет проволочить сквозь себя 80 кг железной проволоки, твердосплавная — до 50 тонн, в 600 раз больше!
Вот что такое твердые сплавы, изготовляемые методом порошковой металлургии. Материалом высоких скоростей можно было бы назвать их, ибо их применение очень часто связано с большими скоростями. А рост скоростей — одна из отличительнейших характерных черт сегодняшней техники.
Взять хотя бы двигатель современной скоростной авиации — реактивный двигатель. Его приход сразу позволил чуть ли не вдвое увеличить скорость полета самолета. Он позволил поднять и потолок самолета в те области атмосферы, где задыхался поршневой двигатель. А знаете ли вы, что реактивный двигатель не может развить и сейчас еще полной возможной мощности? Что в камеры сгорания его впускается больше, чем нужно, воздуха, а то и вбрызгивается вода, чтобы понизить температуру газов горения, хотя чем выше она, тем экономичнее работа двигателя? И делается это потому, что нет материалов, которые смогли бы продолжительное время работать в яростном потоке этих газов, имеющих температуру выше полутора-двух тысяч градусов.
Да, современные литые металлические сплавы, включающие в себя добавки хрома, никеля, кобальта (мы говорили о них), не могут работать при температуре выше 850–900 градусов. При более высоких температурах следует применять тугоплавкие металлы, карбиды и нитриды их. И, конечно же, именно порошковая металлургия позволяет изготовить из них нужные детали аппаратуры.
Одним из наиболее перспективных таких материалов является карбид титана. Он хорошо противостоит тепловому удару — быстрому нагреву при пуске двигателя и быстрому охлаждению при его остановке. С добавкой 20 процентов кобальта при температуре около 900 градусов он почти вдвое превосходит по прочности лучшие жаропрочные металлические сплавы.
А сопло реактивного двигателя… Расширяющаяся труба, в которой раскаленные газы, все ускоряя свое движение, создают реактивную силу. Какие только усилия не прилагают конструкторы, чтобы понизить ее температуру! Ее охлаждают поступающим в камеру сгорания топливом, делают пористой и прокачивают сквозь эти поры часть топлива. Испаряясь на внутренней поверхности трубы, топливо охлаждает ее и создает у поверхности прослойку холодного газа.
Надо ли добавлять, что и такие пористые, способные «потеть» в жару трубы тоже можно изготовить только методом порошковой металлургии?
Этим же методом изготавливают удивительные пористые самосмазывающиеся подшипники. Поры в них заполняют маслом. Едва подшипник нагревается, масло, расширяясь, начинает выходить из пор и создавать смазывающую прослойку. При остывании масло впитывается назад, как вода в губку.
Методом порошковой металлургии готовят тончайшие фильтры и фрикционные накладки муфт сцепления, шестерни и кулачки, шайбы и сердечники электромагнитов, щетки динамомашин и электрические контакты точных приборов и так далее и так далее, ибо уже сегодня нельзя перечислить все, что делается этим методом, а завтра этот список удвоится и утроится…
Вот методами порошковой металлургии и можно изготовлять из блистательного бериллия, как и из многих других металлов, детали машин, аппаратов, приборов.
Как известно, пирамиды, в которых древние египтяне хоронили своих фараонов, были разграблены еще в древности. Были разграблены и скальные погребения египетских царей. И только случайно дошло до нашего времени потерянное еще в древности захоронение фараона Тутанхамона, жившего в XIV в. до н. э.