Читаем Материаловедение: конспект лекций полностью

Плотность древесины – это масса единицы объема материала, выражающаяся в г/см 3 или кг/м 3. Существует несколько показателей плотности древесины, которые зависят от влажности. Плотность древесного вещества – это масса единицы объема материала, образующего клеточные стенки. Она для всех пород примерно одинакова и равна 1,53 г/см 3, т. е. в 1,5 раза выше плотности воды.

Плотность абсолютно сухой древесины – это масса единицы объема древесины при отсутствии в ней воды. Она определяется по формуле:

0 = m0 / V0,

где р0 – плотность абсолютно сухой древесины, г/см 3 или кг/м 3;

m0 – масса образца древесины при влажности 0 %, г или кг; V0 – объем образца древесины при влажности 0 %, см или м 3.

Плотность древесины меньше плотности древесного вещества, так как она имеет пустоты, заполненные воздухом, т. е. пористость, которая выражается в процентах и характеризует отношение пустот в абсолютно сухой древесине. Чем больше плотность древесины, тем меньше ее пористость.

Плотность древесины существенно зависит от влажности С увеличением влажности плотность древесины возрастает По плотности все породы делятся на три группы (при влажности древесины 12 %):

1) породы с малой плотностью – 540 кг/м 3 и менее – это ель, сосна, липа и др.;

2) породы средней плотности – от 550 до 740 кг/м 3– это дуб, береза, вяз и др.;

3) породы высокой плотности – 750 кг/м 3 и более – это кизил, граб, фисташка и др.

Тепловые свойства древесины – это теплоемкость, теплопроводность, температуропроводность и тепловое расширение. Теплоемкость – способность древесины аккумулировать тепло. За показатель теплоемкости принята удельная теплоемкость С – количество теплоты, необходимое для нагревания 1 кг массы древесины на 1 °C. Она измеряется в кДж/кг x t °С.

Сухая древесина представляет собой древесное вещество и воздух, причем массовая доля воздуха в ней незначительна Поэтому теплоемкость сухой древесины практически равна теплоемкости древесного вещества. Удельная теплоемкость древесины практически не зависит от породы и при температуре 0 °C для абсолютно сухой древесины равна 1,55 кДж. С повышением температуры удельная теплоемкость несколько возрастает и при температуре 100 °C увеличивается примерно на 25 %. При увлажнении древесины ее теплоемкость увеличивается.

Процесс переноса тепла в древесине характеризуется двумя показателями – коэффициентом теплопроводности и коэффициентом температуропроводности. Коэффициент теплопроводности? численно равен количеству теплоты, которое проходит в единицу времени через стенку из древесины площадью 1 м 2 и толщиной 1 м при разности температур на противоположных сторонах стенки в 1 °C. Он измеряется в Вт / (м x °С).

Коэффициент температуропроводности характеризует скорость изменения температуры древесины при ее нагревании или охлаждении. Он определяет тепловую инерционность древесины, т. е. ее способность выравнивать температуру. Коэффициент температуропроводности рассчитывают по формуле:

= /с x ,

где – плотность материала, кг/м3;

– коэффициент теплопроводности, Вт / (м x °С);

с – удельная теплоемкость древесины, кДж / (кг x °С).

<p>4. Электрические и акустические свойства древесины</p>

Как показали многочисленные исследования электрических свойств древесины, ее электропроводность, т. е. способность проводить электрический ток, находится в обратной зависимости от ее электрического сопротивления. Существуют поверхностное и объемное сопротивления, которые в сумме дают полное сопротивление образца древесины, размещенного между двумя электродами. Объемное сопротивление характеризует препятствие прохождению тока сквозь толщу образца, а поверхностное – по поверхности. Показателями электрического сопротивления служат удельное объемное и удельное поверхностное сопротивления.

Исследования показали, что сухая древесина плохо проводит ток, но с повышением влажности ее сопротивление уменьшается. Это видно из данных, полученных при исследованиях (табл. 1).

Таблица 1

Снижение поверхностного сопротивления происходит при увеличении влажности. Например, при увеличении влажности бука от 4,5 до 17 % поверхностное электрическое сопротивление уменьшается с 1,2 x 1013 до 1 x 107 Ом.

Кроме того, в результате исследований установлено, что снижение электрического сопротивления древесины происходит при ее нагревании, особенно при ее низкой влажности Так, увеличение температуры от 20 до 94 °C снижает сопротивление абсолютно сухой древесины в 10 6 раз.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука