Читаем Математики, шпионы и хакеры. Кодирование и криптография полностью

DINER’S CLUB

Одной из первых кредитных карт, получивших широкое признание, была карта Diner's Club. Автором идеи был американец Фрэнк Макнамара. В 1950 г. ему удалось убедить различные рестораны принимать оплату безналично с помощью персональных гарантированных кредитных карт, которые Макнамара распространил среди своих лучших клиентов. Наиболее часто в первые десятилетия кредитными картами расплачивались за обеды американские коммивояжеры, будучи в дороге.

* * *

Например, пусть карта имеет следующий номер:

1234 5678 9012 3452

По алгоритму Луна имеем:

1•2 = 2

3•2 = 6

5•2 = 10 => 1 + 0 = 1

7•2=14 => 1 + 4 = 5 (или 14-9 = 5)

9•2 = 18 => 1 + 8 = 9

1•2 = 2

3•2 = 6

5•2 = 10 => 1 + 0 = 1

Далее найдем сумму результатов и цифр на четных позициях:

2 + 6 + 1 + 5 + 9 + 2 + 6 + 1 = 32

2 + 4 + 6 + 8 + 0 + 2 + 4 + 2 = 28

32 + 28 = 60

Результат равен 60, это число кратно 10. Поэтому номер карты является действительным.

Алгоритм Луна можно применить другим способом: номер карты ABCD EFGH IJKL MNOP является правильным, если удвоенная сумма цифр на нечетных позициях и сумма цифр на четных позициях плюс количество цифр на нечетных позициях, которые больше, чем 4, кратно 10. Это правило записывается так:

2 (A + C + E + G + 1 + К + М + О) + (B + D + F + H + J + L + N + P) + (количество цифр на нечетных позициях, которые больше, чем 4) = 0 (mod 10).

Применим это правило к предыдущему примеру:

1234 5678 9012 3452

2 (1 + 3 + 5 + 7 + 9 + 1 + 3 + 5) + (2 + 4 + 6 + 8 + 0 + 2 + 4 + 2) + (4) = 100  0 (mod 10).

Снова мы убедились, что номер кредитной карты является действительным, и показали, что на первый взгляд случайные номера карт соответствуют строгому математическому стандарту.

* * *

ПРИМЕР РАСЧЕТА КОНТРОЛЬНОЙ ЦИФРЫ КРЕДИТНОЙ КАРТЫ В EXCEL

Номер кредитной карты состоит из 15 цифр плюс контрольная цифра. Цифры сгруппированы в четыре группы по четыре цифры. Контрольная цифра (КЦ) рассчитывается следующим образом.

* * *

Можно ли восстановить цифру, отсутствующую в номере карты? Да, если мы имеем дело с действительной кредитной картой. Найдем, например, цифру X в номере 4539 4512 03X8 7356.

Начнем с умножения на 2 цифр на нечетных позициях (4–3—4—1–0—X—7–5), сразу преобразуя результат к одной цифре.

4•2 = 8

3•2 = 6

4•2 = 8

1•2 = 2

0•2 = 0

X•2 = 2Х

7•2 = 14, 14 — 9 = 5

5•2 = 10, 10 — 9 = 1.

Складывая цифры, стоящие на четных позициях, и новые цифры на нечетных, получим:

30 + 41+ 2Х = 71 + 2Х.

Мы знаем, что число (71 + 2Х) должно быть кратно 10.

Если значение X меньше или равно 4, то для таких X (71 + 2Х) никогда не будет кратно 10.

Если же значение X больше 4, то кратно 10 должно быть выражение (71 + 2Х + 1), так как X стоит на нечетной позиции. Видим, что выражение (72 + 2Х) кратно 10 только при X = 9.

Следовательно, мы нашли потерянную цифру 9, и полный номер кредитной карты: 4539451203987356.

Штрихкоды

Первая система штрихкодов была запатентована 7 октября 1952 г. американцами Норманом Вудландом и Бернардом Сильвером. Первые версии штрихкодов отличались от сегодняшних. Вместо привычных нам линий Вудланд и Сильвер придумали концентрические круги. Впервые штрихкоды начали официально использоваться в 1974 г. в магазине города Трой, штат Огайо.

Современные штрихкоды представляют собой последовательность черных полос (которые кодируются как 1 в двоичной системе) и пробелов между ними (которые кодируются как 0). Штрихкоды используются для идентификации физических объектов. Штрихкоды, как правило, печатаются на этикетках и считываются оптическими устройствами. Это устройства, похожие на сканер, которые измеряют отраженный свет и преобразуют темные и светлые области в буквенно-цифровой код, который затем посылается на компьютер. Существует множество стандартов для штрихкодов:

Толщина штрихов и пробелов в штрихкоде соответствует двоичным цифрам.

Code 128, Code 39, Codabar, EAN (этот стандарт появился в 1976 г. в двух версиях, состоящих из 8 и 13 цифр соответственно) и UPC (Universal Product Code — универсальный код товара, используемый в основном в США и доступный также в двух версиях из 12 и 8 цифр соответственно). Наиболее распространенной является 13-значная версия EAN. Несмотря на разнообразие стандартов, штрихкоды позволяют идентифицировать любой продукт в любой части мира быстро и без существенных ошибок.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное