Можно привести много других примеров, когда математические теории, возникающие и развивающиеся из внутренних потребностей математики, находят затем широкое практическое применение в других отраслях науки и техники. Так обстояло дело, например, с математической логикой, аппарат которой стал одним из основных средства проектирования автоматов и моделирования дискретных систем. Неэвклидовы геометрии, служившие первоначально целям аксиоматического обоснования математики, нашли применение при конструировании самолетов и ракет. Теория электромагнитных волн была разработана за несколько десятилетий до их обнаружения и практического использования.
В результате взаимодействия математики и техники возникают и успешно развиваются новые прикладные науки. Так, на стыке теории вероятностей с техникой связи и передачи сообщений возникла теория информации, методы которой используются не только в технике, но и в экономике, лингвистике, биологии. Под влиянием и при непосредственном участии математики развиваются такие общие науки как кибернетика, теория цепей и систем.
Одним из наиболее эффективных результатов взаимодействия математики и техники явилось создание современных вычислительных машин. Симбиоз математических методов и технических средств электроники, магнитной техники, прикладной оптики и механики уже весьма высоко зарекомендовал себя в этом отношении и открывает необозримые перспективы в будущем. Развитие вычислительной техники позволяет привести в действие более мощные ресурсы математики и усиливает ее роль как непосредственной производительной силы общества, способствуя тем самым прогрессу самой математики.
2. Современная математика. Наиболее характерной чертой современной математики является чрезвычайно высокая степень обобщения и абстракции. Традиционное определение математики как науки о пространственных формах и количественных отношениях уже не соответствует современному положению вещей, оно приобретает более глубокое и широкое содержание. Предмет современной математики составляют совокупности объектов самого общего вида и любые возможные отношения между ними.
Так, трехмерное геометрическое пространство обобщается на любое число измерений, и в этом многомерном пространстве изучаются пространственно подобные отношения (длина, расстояние, ортогональность). Алгебраические операции абстрагируются и распространяются на объекты любой природы, которые образуют различные структуры в зависимости от приписываемых им свойств (группа, кольцо, тело, поле). Под переменными понимаются не только обычные величины, но и функции, которые рассматриваются как объекты функциональных пространств. Изучаемые математикой объекты объединяют совокупности величин, для представления которых используются такие понятия как множества, матрицы, графы.
- 7 -
Математика развивается как единая наука с присущими ей методами. Но в зависимости от точки зрения на ее предмет математику подразделяют на содержательную математику, формальную математику, метаматематику и прикладную математику.