«Физические линии» были приняты едва ли не так же сдержанно, как и «фарадеевские линии» и в Англии, и на континенте. Сложными были дифференциальные уравнения, записанные Максвеллом. Совершенно нелепым физически казалось понятие «тока смещения» в диэлектрике, особенно в пустоте. Ведь там ничего нет! Смещение в диэлектрике еще можно осмыслить – это смещение зарядов... Но смещение в пустоте... Что там смещается?
Директор Римской обсерватории Анжело Секки, прочтя статью Максвелла при подготовке своего трактата «О единстве физических сил», не счел мысли автора слишком ценными. Они удостоились в капитальном труде синьора Секки лишь сноски следующего содержания:
«Кроме хорошо известных трудов Ламе, Коши и Верде по оптике, можно указать еще на исследования Максуэлля, рассматривающего магнетизм с точки зрения частичных вихрей. Нам кажется только, что этот автор бесполезно усложняет дело... Однако недавно в ряды защитников эфирной теории электрического тока стал также знаменитый Тиндаль...»
Даже Гельмгольц никак не мог понять – что же по новой теории представляет собой электрический заряд?
Да, странная была эта теория.
Странная и непонятная. Мало было у нее сторонников.
Мыслимо ли было на столь неочевидных основаниях воздвигать такие категоричные и принципиальные выводы?
И никто пока не мог ответить на этот вопрос.
Даже сам Максвелл.
В октябре 1861 года Максвелл написал Фарадею о том, что им обнаружен факт практического совпадения величин: отношения электромагнитной и электростатической единиц электричества и скорости света. Кроме того, стало очевидным влияние электрических и магнитных свойств среды, через которую проходит свет, на его скорость. Максвелл писал, что если свет есть в действительности форма волнового движения, то можно положить конец спекуляциям о природе света. Можно по-новому объяснить многие свойства света и оптические явления. Легко можно было бы объяснить теперь свойства полного внутреннего отражения, рефракции и отражения света. А это должно содействовать постройке новых точных оптических приборов – микроскопов и телескопов, а также и предметов обыденной жизни – очков и луп.
К сожалению, все прогрессирующая умственная слабость Фарадея помешала ему понять значение выводов Максвелла. Он не мог разделить уже великую радость своего молодого последователя, доказывающего то, о чем Фарадей когда-то размышлял сам...
ЛОНДОНСКИЕ ЗАБОТЫ
Столичная жизнь склоняла Максвелла к несвойственной для него суетливости. Он обычно сознательно уклонялся от всего того, что могло бы мешать его научным занятиям. Близость Сити (в ясную погоду он мог сверять время по часам Вестминстерского аббатства) нисколько не приблизила Максвелла к непосредственному участию в бурных событиях его времени. Буквально за несколько кварталов от него писал свои труды Карл Маркс, где-то рядом шумело шествие, устроенное жителями Лондона в честь народного героя Италии Джузеппе Гарибальди, совсем недалеко собирались у Герцена революционеры разных стран...
Но Максвелл старался избегать событий, прямо не относящихся к его науке. У него и так оставалось очень мало времени для научной работы – все поглощал Кингс-колледж.
Если политики еще как-то можно было избежать, то ряда обязанностей по научной работе – никак, да и сам Максвелл никогда не уклонялся от всего того, что было связано с наукой, тем более – с электричеством.
На этот раз речь шла об Оме. Точнее, о его законе, о величине эталонного электрического сопротивления. Хотя система единиц была уже предложена и введена в обиход, в области единиц электромагнитных царил в то время хаос.
Получившие в шестидесятые годы широкое распространение электромагнитные телеграфы стали первым широким практическим применением электричества в век пара. В больших количествах изготавливались проволока, аппараты, электрические батареи. Необходимо было серьезно подумать о введении стандартных электромагнитных величин для сопротивления проводников, электродвижущей силы источников, силы тока в цепях.
Эти величины долгое время выражались в произвольных единицах. Единицы напряженности магнитного поля были различными в Лондоне, Париже и Санкт-Петербурге, поскольку они отнесены были к различной в этих городах и в разное время силе земного магнетизма. Сопротивление одного и того же образца было также различным в разных странах и лабораториях, было разным у Ленца, Уитстона, Якоби, Сименса.
Это вызвало к жизни систему единиц великого Гаусса. В 1832 году он предложил систему абсолютных единиц CGS.
Система CGS не вводила, однако, твердой и общепринятой единицы электрического сопротивления. И поэтому на ежегодном конгрессе Британской ассоциации в 1861 году был назначен Комитет по эталонам.