Читаем Магия чисел полностью

Зера Колберн: занимательные расчеты

Одним из первых извлечь выгоду из своего таланта — умения производить вычисления молниеносно — сумел Зера Колберн (1804–1839), сын американского фермера из Вермонта, который выучил таблицу умножения до 100 даже раньше, чем научился читать и писать. Когда юному дарованию исполнилось шесть лет, его отец организовал тур, и выступления Зеры позволили скопить достаточный капитал для того, чтобы отправить мальчика в школу в Париже или Лондоне. В возрасте восьми лет он был известен во всем мире, выступал со своими молниеносными расчетами в Англии и был охарактеризован в Annual Register как «возможно, самый исключительный феномен в истории человеческого разума из когда-либо существовавших». Майкл Фарадей и Сэмюэль Морзе восхищались его талантом.

Где бы Колберн ни выступал, он всегда опережал всех соперников в скорости и точности. В автобиографии он рассказывает о наборе задач, которые ему задали в Нью-Хэмпшире в июне 1811 года: «Сколько дней и часов прошло с момента рождения Христа 1811 лет назад? Ответил за двадцать секунд: 661 015 дней, 15 864 360 часов. Сколько секунд содержится в одиннадцати годах? Ответил за четыре секунды: 346 896 000.

Колберн использовал методы, описанные в этой книге, чтобы проводить вычисления исключительно в уме. Например, он раскладывал большое число на меньшие сомножители и затем перемножал их: однажды Колберн умножил 21 734 х 543 путем разложения 543 как 181 х 3. Затем он умножил 21 734 х 181, чтобы получить 3 933 854, и наконец умножил это число на 3, чтобы получить в итоге 11 801 562.

Как часто бывает с такими людьми, интерес к удивительным способностям Колберна со временем утих, и в возрасте двадцати лет юноша вернулся в США и стал проповедником-методистом. Он умер в возрасте тридцати пяти лет. Подытоживая информацию о своих способностях к молниеносным вычислениям и преимуществам, которые такой дар дает, Колберн размышлял: «Действительно, метод… требует большего количества вычислений, чем общее правило. Зато запомнится то, что ручка, чернила и бумага обходились Зере очень дешево».

ПОЧЕМУ ЭТИ ПРИЕМЫ РАБОТАЮТ

Этот раздел предназначен для учителей, студентов, любителей математики и всех, кому любопытно, почему этот метод работает. Некоторые найдут теоретическую сторону вопроса не менее интересной, чем практическая. К счастью, вам не нужно разбираться в том, почему метод работает, для того чтобы научиться его применять. Всем магическим трюкам есть рациональное объяснение. И математические не исключение. И вот прямо сейчас маг от математики раскроет свои самые сокровенные тайны!

В этой главе, посвященной задачам на умножение, мы применили дистрибутивный (распределительный) закон, который позволял нам разбивать задачи на части. Данный закон гласит, что для любых чисел a, b и c

(b + с) х а = (b х а) + (с х а)

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное