Читаем Магия чисел. Ментальные вычисления в уме и другие математические фокусы полностью

Итак, применяя метод слева направо, вы начинаете решение с самых значимых цифр вашего ответа. Если вы привыкли работать на бумаге справа налево, то вам может показаться неестественным новый подход. Но с практикой к вам придет понимание, что это самый эффективный способ для устных вычислений. Хотя, возможно, первый набор задач — сложение двузначных чисел — и не убедит вас в этом. Но проявляйте терпение. Если будете следовать моим рекомендациям, то скоро поймете, что единственным легким путем к решению задач на сложение трехзначных (и более «значных») чисел, всех задач на вычитание, умножение и деление является метод слева направо. Чем раньше вы приучите себя действовать так, тем лучше.

Сложение двузначных чисел

Прежде всего я исхожу из того, что вы знаете, как складывать и вычитать числа, состоящие из одной цифры. Мы начнем со сложения двузначных чисел, хоть я и подозреваю, что вы неплохо умеете делать это в уме. Однако следующие упражнения все равно станут для вас хорошей практикой, так как навыки сложения двузначных чисел, которые вы приобретете в итоге, понадобятся для решения более трудных задач на сложение, как, впрочем, и для почти всех задач на умножение, предложенных в следующих главах. В этом проиллюстрирован фундаментальный принцип устной арифметики, а именно: «упрощай задачу, разбивая ее на меньшие, проще решаемые». Это ключ практически к каждому методу, представленному в данной книге. Перефразируя старую пословицу, есть три составляющие успеха: упрощай, упрощай и упрощай.

Самые легкие задачи на сложение двузначных чисел — те, которые не требуют от вас держать в уме какие-либо цифры (то есть когда первые две цифры в сумме дают 9 или меньше или сумма последних двух цифр равна 9 и меньше). Например:

Чтобы сложить 47 + 32, сначала 30 прибавляем к 47, а затем к полученной сумме прибавляем 2. После сложения 30 и 47 задача упрощается: 77 + 2 равно 79. Проиллюстрируем это следующим образом:

Приведенная схема — простой способ представления мыслительных процессов, выполняемых для получения правильного ответа. Хотя вы должны читать и понимать такие схемы на протяжении всего времени работы с книгой, записывать что-либо не требуется.

Теперь попробуем вычисление, в котором необходимо держать числа в уме:

Прибавляя слева направо, вы можете свести задачу к действию 67 + 20 = 87, а затем к сложению 87 + 8 = 95.

Теперь попробуйте сами, после чего сверьтесь с тем, как это сделали мы.

Ну что, получилось? Вы сложили 84 + 50 = 134, а затем 134 + 7 = 141.

Если удержание цифр в уме служит причиной ваших ошибок, не переживайте. Вероятно, это ваша первая попытка выполнить систематизированное устное вычисление и, как и большинству людей, вам понадобится время, чтобы запомнить числа. Однако с опытом вы сможете удерживать их в уме автоматически. В качестве практики попробуйте решить устно еще одну задачку, а затем опять сверьтесь с тем, как это сделали мы.

Вам следовало сложить 68 + 40 = 108 и 108 + 5 = 113 (итоговый ответ). Было ли вам проще? Если хотите проверить свои силы на большем количестве задач на сложение двузначных чисел, обратитесь к примерам, представленным ниже. (Ответы и ход вычислений приведены в конце книги.)

Сложение трехзначных чисел

Стратегия сложения трехзначных чисел точно такая же, как и двузначных: вы складываете слева направо и после каждого шага переходите к новой, более простой задаче на сложение.

Попробуем:

Вначале прибавляем к 538 число 300, затем 20, затем 7. После прибавления 300 (538 + 300 = 838) задача сводится к 838 + 27. После прибавления 20 (838 + 20 = 858) задача упрощается до 858 + 7 = 865. Такого рода мыслительный процесс может быть представлен в виде следующей схемы:

Все задачи на устное сложение можно решить таким способом, последовательно упрощая задачу до тех пор, пока не останется просто прибавить однозначное число. Обратите внимание, что пример 538 + 327 требует удержания в уме шести цифр, тогда как 838 + 27 и 858 + 7 — только пяти и четырех цифр соответственно. Если вы упрощаете задачу, решить ее становится легче!

Попробуйте решить в уме следующую задачу на сложение, прежде чем посмотрите наше решение

Вы упростили ее, складывая цифры слева направо? После сложения сотен (623 + 100 = 723) осталось сложить десятки (723 + 50 = 773). Упростив задачу до 773 + 9, в сумме получаем 782. В виде схемы решение задачи выглядит так:

Когда я решаю подобные задачи в уме, я не визуализирую числа, а пытаюсь слышать их. Я слышу пример 623 + 159 как шестьсот двадцать три плюс сто пятьдесят девять. Выделяя для себя слово сто, я понимаю, с чего начать. Шесть плюс один равняется семи, значит, моя следующая задача семьсот двадцать три плюс пятьдесят девять и так далее. Решая такие задачи, тоже делайте это вслух. Подкрепление в виде звуков поможет вам освоить этот метод гораздо быстрее.

Задачи на сложение трехзначных чисел на самом деле не бывают сложнее следующей:

Взгляните на то, как это сделается:

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное