Термин считается распределенным (т. е. развернутым, исчерпанным, взятым в полном объеме), если в суждении речь идет обо всех объектах, входящих в объем этого термина, и обозначается знаком «+», а на круговых схемах Эйлера изображается полным кругом (т. е. кругом, который не содержит в себе другого круга и не пересекается с другим кругом):
Термин считается нераспределенным (т. е. неразвернутым, неисчерпанным, взятым не в полном объеме), если в суждении речь идет не обо всех объектах, входящих в объем этого термина, и обозначается знаком «—», а на круговых схемах Эйлера изображается неполным кругом (т. е. кругом, который содержит в себе другой круг или пересекается с другим кругом):
Например, в суждении:
Распределенность терминов в простых суждениях может быть различной в зависимости от вида суждения и характера отношений между его субъектом и предикатом. Рассмотрим все случаи распределенности терминов в простых суждениях.
1. Если в суждении вида А субъект и предикат находятся в отношении равнозначности, то они оба являются распределенными (S+, P+), например:
2. Если в суждении вида А субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида А, кроме равнозначности и подчинения, как мы знаем, быть не может), то субъект распределен, а предикат нераспределен (S+, P—), например:
3. Если в суждении вида I субъект и предикат находятся в отношении пересечения, то они оба являются нераспределенными (S—, P—), например:
4. Если в суждениях вида I субъект и предикат находятся в отношении подчинения (других отношений между субъектом и предикатом в суждениях вида I, кроме пересечения и подчинения, быть не может), то субъект нераспределен, а предикат распределен (S—, P+), например:
5. В суждениях вида Е субъект и предикат находятся только в отношении несовместимости. Поэтому в этих суждениях они всегда оба распределены (S+, P+), например:
6. Если в суждениях вида О субъект и предикат находятся в отношении пересечения, то, в отличие от их распределенности в суждениях вида I, субъект нераспределен, а предикат распределен (S—, P+), например:
Несмотря на пересекающиеся круги на схеме Эйлера, субъект данного суждения нераспределен, а предикат распределен. Почему так получается? (Выше мы говорили о том, что пересекающиеся на схеме круги обозначают нераспределенные термины). На схеме штриховкой показана та часть субъекта, о которой идет речь в суждении, а речь в нем идет о тех школьниках, которые спортсменами не являются, в силу чего круг, обозначающий на схеме предикат, остался полным (т. е. круг, обозначающий субъект, не отрезает от него какую-то часть, как это происходит в суждении вида I, где субъект и предикат находятся в отношении пересечения).
7. Если в суждении вида О субъект и предикат находятся в отношении подчинения, то субъект нераспределен, а предикат распределен (S—, P+), например:
Итак, cубъект всегда распределен в суждениях вида А и Е и всегда нераспределен в суждениях вида I и О, а предикат всегда распределен в суждениях вида Е и О, но в суждениях вида А и I он может быть как распределенным, так и нераспределенным в зависимости от характера отношений между ним и субъектом в этих суждениях.
2.6. Как устанавливать распределенность терминов в простых суждениях
Наиболее простой способ установления распределенности терминов в простых суждениях предполагает использование круговых схем Эйлера. Достаточно уметь определять вид отношений между субъектом и предикатом в предложенном суждении и изображать их круговыми схемами.