Так же как и генетику в ее первые годы, системную биологию многие ученые приняли за скучную «большую науку» и слишком хлопотливое занятие. (Подозреваю, что это отношение до сих пор преобладает.) Так же как и с генетикой, первый взгляд оказался, мягко говоря, недальновидным. Наличие высококачественных данных по генной экспрессии, генетическим и белок-белковым взаимодействиям, локализации белка в клетке и других данных системного уровня в масштабе генома открыло новые измерения эволюционного анализа (иначе иногда называемого эволюционной системной биологией) и обеспечило его взаимопроникновение с эволюционной геномикой. В исследованиях системной биологии, в масштабах генома, уже были открыты нетривиальные связи между эволюцией генных последовательностей, генной экспрессией, структурой белка и другими характеристиками генов и белков. Эти открытия в целом оказались совместимыми с точкой зрения на геном как на статистический ансамбль генов и дали возможность в новом свете рассмотреть селективную и нейтральную составляющие эволюции структуры и функций генома.
В предыдущей главе было показано, что белок-кодирующие гены (по крайней мере в отношении мутационных замен, приводящих к изменению аминокислот в кодируемом белке) принадлежат к числу наиболее консервативных последовательностей генома. Однако уже на раннем этапе исследований в молекулярной эволюции стало понятно, что скорости эволюционирования белок-кодирующих генов могут очень сильно разниться (Wilson et al., 1977). Этот широкий разброс значений в общем объясняли существованием широкого спектра функций белка, которые по-разному ограничивают скорость эволюции соответствующих генов. В самом деле, кажется само собой разумеющимся, что огромная роль ДНК-полимеразы, сложнейшего фермента, который катализирует встраивание комплементарных матрице нуклеотидов в растущую цепь ДНК, требует значительного ограничения на скорость эволюции для соответствующей ей генной последовательности, в то время как, например, для структурного белка, чья единственная задача состоит в поддержании целостности ядерного матрикса, такого сильного ограничения не требуется. Фундаментальное представление о том, что эволюция белок-кодирующих генов может сводиться не только к уникальным особенностям молекулярной структуры и функции белков, возникло уже на этом раннем этапе. В богатой идеями обзорной статье, опубликованной Аланом Вильсоном и коллегами в 1977 году, выдвигается гипотеза о том, что скорость эволюции генных последовательностей зависит как от уникальных функций кодируемого белка, так и от важности этого белка для выживания организма (Wilson et al., 1977). Однако в то время не было прямых способов изучения эволюционных ограничений, так что эти идеи, хоть и интригующие, тогда находились всецело в области умозрительных построений.
В начале третьего тысячелетия геномика и системная биология полностью преобразили область эволюционных исследований. Доступность множества данных по геномным последовательностям позволила проанализировать и сравнить распределения скоростей эволюции для полных наборов ортологичных генов в различных таксонах, а также изучить взаимосвязи скоростей эволюции ортологов в различных эволюционных линиях. Значения скоростей эволюции по несинонимичным сайтам в ортологичных генах могут различаться на три-четыре порядка, и это распределение значений гораздо шире, чем распределение скоростей по синонимичным сайтам. Замечательно, что формы графиков распределений по ортологичным белкам исключительно похожи, практически одинаковы для всех изученных клеточных форм жизни, от бактерий и архей до млекопитающих (см. рис. 4-2; Grishin et al., 2000; Wolf et al., 2009). Все эти распределения имеют так называемую логарифмически нормальную форму, то есть распределение логарифма эволюционной скорости близко к нормальному (распределению Гаусса, функция плотности вероятности которого имеет колоколообразную форму). В теории случайных процессов такая форма обычно представляет собой результат произведения многих независимых случайных величин. Универсальность функции распределения среди различных организмов, обладающих глубокими различиями в функциональной организации и сильно различающихся по размеру геномов, представляется неожиданной и может указывать на существование фундаментальных, простых объяснений, которые мы и обсудим в этой главе.