Теперь нам предстоит рассмотреть существенно иную эволюционную модель, первоначально обрисованную Анатолием Альтштейном (Altstein, 1987), а затем независимо и более полно разработаную Энтони Пулом и соавторами (Poole et al., 1998). В этой модели рибосомы и механизм трансляции производятся от древнего рибозима-репликазы. В модели постулируется, что проторибосома изначально функционировала как «трипликаза», сложный рибозим, объединяющий функции РНК-полимеразы и РНК-лигазы и синтезировавший молекулы РНК, комплементарные матрице, тринуклеотидными шагами. Эта «трипликазная» проторибосома способствует сборке тРНК-подобных молекул (аналогично РНК
Переход от трипликазы к современному типу трансляционно-репликационной системы требует нескольких сложных этапов, а именно появления генетического кода (в данном случае на уровне аминокислотной избирательности прото-тРНК) и обратной связи между трансляцией и репликацией РНК (происхождение белковых РНК-полимераз или белковых кофакторов рибозима-полимеразы). Кроме того, необходима субфункционализационная стадия, на которой трипликаза порождает отдельные проторибосомы и репликазы, а последняя переходит от лигирования триплетов к обычному механизму репликации с присоединением нуклеотидов по одному.
Скептический обзор моделей эволюции репликации и трансляции
В предыдущих разделах мы обрисовали современное состояние гипотезы мира РНК и подробнее обсудили происхождение репликации и трансляции. Зададимся теперь простым прямым вопросом: убедительны ли имеющиеся свидетельства в поддержку любой из этих моделей. Само собой, вопрос уже подразумевает отрицательный ответ. У нас есть определенные косвенные указания, пусть даже и далекие от полного согласованного сценария самых ранних этапов эволюции передачи биологической информации. Во-первых, не будем забывать о логической неизбежности мира РНК: какой еще могла быть отправная точка эволюции системы трансляции? Во-вторых, сравнительный анализ составных частей системы трансляции, несомненно, указывает на гораздо большую роль РНК в древней трансляции по сравнению с современной системой, в частности что РНК играла решающую роль в установлении соответствия аминокислот кодонам. В-третьих, рибозимы впечатляют своей каталитической универсальностью и эффективностью (хотя и уступают в этом белкам). Тридцать лет назад не было известно ни одной каталитической функции молекул РНК, а теперь описаны десятки видов активности рибозимов, включая некоторые из ключевых реакций трансляции, такие как высокоэффективное аминоацилирование.
На этом, к сожалению, хорошие новости заканчиваются, а остальное напоминает скорее отрезвляющий ледяной душ. Невзирая на все достижения «рибозимологии», ни одна рибозим-полимераза даже не приближается к уровню эффективности, который необходим, чтобы всерьез рассматривать репликаторные системы, состоящие из одних РНК, в качестве ключевого промежуточного звена в эволюции жизни. Ни один рибозим не способен катализировать синтез нуклеотидов или даже сахаров, входящих в их состав. Даже если мы закроем глаза на эти проблемы, путь от предполагаемого мира РНК к системе трансляции невероятно труден. Общие представления касательно функций абиогенных аминокислот и, возможно, пептидов в мире РНК, такие как роль кофакторов рибозимов (см. обсуждение в предыдущих параграфах), оказываются плодотворными и совместимы с экспериментальными данными. Тем не менее разбиение эволюции системы трансляции на последовательные шаги, каждый из которых давал бы биологически объяснимое селективное преимущество, чрезвычайно затруднительно даже в качестве спекулятивной схемы, не говоря уже об экспериментальной проверке. Гипотезы трипликазы и проторибосомы привлекательны как попытка одновременно объяснить происхождение репликации и трансляции в одном цикле, но реалистичен ли подобный сценарий? Сама трипликаза должна быть чрезвычайно сложной, замысловатой молекулярной машиной, и это вызывает подозрение, что, невзирая на всю ее привлекательность, трипликаза может быть не самым правдоподобным решением вопроса о происхождении трансляции.