В зависимости от типа суждения превращение можно выразить следующим образом.
Все S есть Р — Ни одно S не есть не-Р. Ни одно S не есть Р — Все S есть не-Р. Некоторые S есть Р — Некоторые S не есть не-Р. Некоторые S не есть Р — Некоторые S есть не-Р. Обращение — это умозаключение, в котором при перемене мест субъекта и предиката качество посылки не меняется.
То есть в процессе вывода субъект встает на место предиката, а предикат — на место субъекта. Соответственно, схему обращения можно изобразить как S есть Р — Р есть S.
Обращение бывает с ограничением и без ограничения (его еще называют простое или чистое). Это разделение основывается на количественном показателе суждения (имеется в виду равенство или неравенство объемов S и Р). Это выражается в том, изменилось ли кванторное слово или нет и распределены ли субъект и предикат. Если такое изменение происходит, то имеет место обращение с ограничением. В обратном случае можно говорить о чистом обращении. Напомним, что кванторное слово — это слово — показатель количества. Так, слова «все», «некоторые», «ни один» и другие являются кванторными словами.
Противопоставление предикату характеризуется тем, что связка в следствии меняется на противоположную, субъект противоречит предикату посылки, а предикат эквивалентен субъекту посылки.
Необходимо сказать, что непосредственное умозаключение с противопоставлением предикату невозможно вывести из частноутвердительных суждений.
Приведем схемы противопоставления в зависимости от типов суждений.
Некоторые S не есть Р — Некоторые не-Р есть S. Ни одно S не есть Р — Некоторые не-Р есть S. Все S есть Р — Ни одно Р не есть S.
Объединяя сказанное, можно рассматривать противопоставление предикату как продукт сразу двух непосредственных умозаключений. Первым из них производится превращение. Его результат подвергается обращению.
3. Условные и разделительные умозаключения
Говоря о дедуктивных умозаключениях, нельзя не обратить внимания на условные и разделительные умозаключения.
Условные умозаключения называются так потому, что в качестве посылок в них используются условные суждения (если а, то b). Условные умозаключения можно отразить в виде следующей схемы.
Если а, то b. Если b, то с. Если а, то с.
Выше указана схема умозаключений, являющихся видом условных. Для таких умозаключений характерно, что все их посылки являются условными.
Другим видом условных умозаключений являются условно-категорические суждения. Соответственно названию в этом умозаключении не обе посылки являются условными суждениями, одна из них — простое категорическое суждение.
Необходимо также упомянуть о модусах — разновидностях умозаключений. Существуют: утверждающий модус, отрицающий модус и два вероятностных модуса (первый и второй).
Утверждающий модус имеет самое широкое распространение в мышлении. Это связано с тем, что он дает достоверное заключение. Поэтому правила различных учебных дисциплин строятся в основном на основе утверждающего модуса. Можно отобразить утверждающий модус в виде схемы.
Если а, то b.
а.
b.
Приведем пример утверждающего модуса.
Два истинных суждения, которые являются посылками этого суждения, преобразуются в процессе вывода в истинное суждение. Отрицающий модус выражается по следующей схеме. Если а, то b. Не-b. Не-а.
Это суждение строится на основе отрицания следствия и отрицания основания.
Умозаключения могут давать не только истинные, но и неопределенные суждения (неизвестно, истинны они или ложны).
В связи с этим следует сказать о вероятностных модусах.
Первый вероятностный модус на схеме отображается следующим образом.
Если а, то b.
b.
Вероятно, а.
Как ясно из названия, следствие, выводимое из посылок при помощи этого модуса, является вероятным.
Как мы видим, от утверждения следствия к утверждению основания невозможно вывести истинное умозаключение.
Второй вероятностный модус в виде схемы можно изобразить так.
Если а, то b. Не-а.
Вероятно, не-b. Приведем пример.