Закон коммутативности при дизъюнкции действует независимо от того, какой ее вид имеется в виду. Вспомним, что дизъюнкция выражается союзами, главные из которых, определенно, «или» и «либо». Приведем примеры строгой и нестрогой дизъюнкции и используем их для иллюстрации действия закона коммутативности. Суждение «Я выпью воды с газом или без газа» является примером нестрогой дизъюнкции, в то время как суждение «Я пойду в университет или останусь дома» — строгой. Различие между ними состоит в том, что в первом случае действие все равно будет совершено, вне зависимости от выбранного типа воды. Во втором же случае действие (пойду в университет) исключается, если выбрать второй вариант и остаться дома. Во многих случаях союз «или» можно просто заменить союзом «либо». Например, в предложении «Или я съеду с горы на лыжах, или упаду по пути» можно использовать союз «либо» без каких-нибудь изменений. Однако есть союз, который используется самостоятельно и также является дизъюнктивной связкой. Это союз «то ли, то ли». Он достаточно часто используется при построении предложений
Как уже было сказано выше, закон коммутативности в дизъюнктивных высказываниях действует независимо от типа дизъюнкции. Возьмем для примера следующее суждение: «Я выпью воды с газом или без газа» и «Я выпью воды без газа или с газом». Очевидно, что разницы между ними нет, смысл остается одним. Так же можно проверить и другие примеры, скажем, «Я пойду в университет или останусь дома» и «Я останусь дома или пойду в университет». Содержание и объем сложного суждения, образованного при помощи дизъюнкции, не меняются от перестановки его членов. Именно поэтому мы и говорим об универсальной коммутативности.
Выражение логических связок в языке очень многообразно, существует множество схем, по которым строятся высказывания. По каждой из этих схем можно построить огромное количество сложных суждений. Особенно это характерно для русского языка во всей его неоднозначности. Например, импликация строится по таким схемам, как, например, «для А необходимо В»; «для В достаточно А»; «если А, то В», «А, только если В» и др. Например: «Для того чтобы много знать, необходимо много учиться»; «Для прыжка с вышки достаточно правильно оттолкнуться ногами»; «Если машина застрянет, то ее придется толкать»; «Вы сможете сдать сессию вовремя, только если начнете готовиться немедленно».
Ряд формул существует и для эквиваленции: «А, если В, и В, если А»; «для А необходимо и достаточно В»; «А тогда и только тогда, когда В» и др. Приведем примеры суждений, построенных на основе указанных схем. Например:
В связи с этим необходимо упомянуть также о неоднозначности союзов, выражающих логические постоянные (конъюнкцию, дизъюнкцию, импликацию и т. д.). Например, союз «если» может зачастую выражать не импликацию, а конъюнкцию. Это зависит от наличия содержательной связи между суждениями. В связи с этим необходимо рассматривать выражения естественного языка с позиций их многообразия и неоднородности.
Кроме логических связок, выражаемых в русском языке при посредстве союзов, которые используются при образовании общих и частных суждений, существуют кванторы. Это квантор существования и квантор общности.
Квантор общности выражается в русском языке словами «каждый», «всякий», «все», «ни один» и т. д. Обычно формула с квантором общности читается как «все предметы обладают определенным свойством».
Квантор существования выражается словами «большинство», «меньшинство», «некоторые», «многие» и «немногие», «немало» и «немного», «почти все» и т. д. Этот квантор выражается как