1. Система должна быть определена малым числом переменных. Например, множество Мандельброта определяется очень простым уравнением с одной-единственной комплексной переменной, и даже оболочка Мандельброта, изображенная на илл. 20, определяется всего тремя переменными. Если мы используем элемент случайности для увеличения богатства формы, это добавляет всего одну дополнительную переменную. Более сложные фракталы определяются бо́льшим числом уравнений, но это число обычно находится в промежутке от пяти до десяти. Однако даже фракталы, созданные с использованием гораздо большего количества переменных, могут проявлять хаотическое поведение, как мы видели на примере человеческого мозга: он создается из тысяч генов и проявляет хаотические черты.
2. Система должна быть чрезвычайно чувствительна к малым изменениям начального состояния. В случае фракталов начальное состояние выражается уравнениями, определяющими фрактал. И действительно, малейшие изменения параметров этих уравнений изменяют вид фрактала самым радикальным образом.
3. В какой-то момент своего развития хаотическая система должна оказываться сколь угодно близко ко всем состояниям, которых она теоретически может достичь. В той области плоскости или трехмерного (или многомерного) пространства, в которой фрактал определен, он плотен в том же смысле, в котором плотно облако: он не заполняет все точки, как твердое тело, но приближается ко всем точкам своей области определения. Любые точки этой области, не принадлежащие фракталу, сколь угодно близки к точкам, которые ему принадлежат.
Свойственна фракталам и непредсказуемость хаоса. Если взять случайную точку на плоскости и спросить, принадлежит ли она данному фракталу, не существует универсального способа найти ответ на этот вопрос. В это, может быть, трудно поверить, так как фрактал определяется несколькими уравнениями и теоретически мы должны быть способны определить, принадлежит ли та или иная точка множеству их решений. Но Гёдель говорит: если окажется, что нам это не под силу, ничего удивительного в этом не будет. В случае двойного маятника мы можем проследить его траекторию исходя из начального состояния, и если эта траектория пройдет через нашу случайно выбранную точку, то мы сможем заключить, что точка действительно лежит на траектории. Но если маятник не пройдет через эту точку, мы никак не можем предсказать, пройдет ли он через нее когда-нибудь в дальнейшем.
То же справедливо и в отношении фракталов: единственный способ определить, принадлежит ли та или иная точка данному фракталу — это продолжать решение соответствующих уравнений на компьютере. Если компьютер нарисует именно ту точку, которую мы выбрали, то можно быть уверенным, что она принадлежит фракталу. Но до того, как это случится, мы не будем иметь никакого понятия, случится ли это когда-нибудь. Следовательно, если точка все же не принадлежит фракталу, мы никогда об этом не узнаем, как бы долго ни работал наш компьютер.