На рисунке представлены отношения понятий, выражаемые посылками. Объём понятия «рыбы» представлен кругом М, объём понятия «дельфины» — кругом S, объём понятия «киты»— кругом Р. Из рисунка видно, что мы не вправе сделать какое бы то ни было заключение о необходимом отношении объёма S к объёму Р. Из того, что весь объём S находится вне объёма М и весь объём Р также находится вне объёма М, ещё не видно, в каком отношении будет объём S к объёму Р. Рисунок показывает, что здесь остаются открытыми
§ 20. Шестое общее правило формулируется так:
Рассмотрим силлогизм:
Ни один злак не есть споровое растение.
Пшеница — злак.
———————————————
Пшеница не есть споровое растение.
Здесь одна из посылок — отрицательная, а другая — утвердительная. Это значит, что объём одного из терминов, входящих в вывод, стоит
Рис. 52
На рисунке изображены отношения понятий, выражаемые посылками. Объём понятия «злаки» изображён кругом М, объём понятия «пшеница» — кругом S, объём понятия «споровые растения» — кругом Р. Из рисунка видно, что так как весь объём М находится вне объёма Р (бо́льшая посылка), то и объём S, входящий целиком как часть в объём М (меньшая посылка), находится весь вне объёма Р (вывод).
§ 21. Седьмое общее правило силлогизма формулируется так:
Рис. 53
На рисунке изображены отношения между понятиями силлогизма, обеспечивающие отрицательный вывод. Из рисунка видно, что объём Р во всяком случае должен быть весь вне всего объёма М. Что касается отношения объёма S к объёму М, то вывод может получиться отрицательным и в том случае, когда S входит в М только в известной части своего объёма (1), и — тем более — в случае, когда S входит в М всем своим объёмом (2). В первом случае вывод может получиться частноотрицательный, во втором — вывод всегда будет общеотрицательный.
Итак, объём Р должен быть весь вне всего объёма М, для того чтобы вывод мог получиться отрицательный. Но это значит, что одна из посылок силлогизма (бо́льшая) должна быть отрицательной.
Напротив, в случае, если обе посылки утвердительные, предикат вывода (Р) никак не может оказаться в таком отношении к субъекту вывода (S), при котором весь объём Р мог бы находиться вне всего или хотя бы вне какой-то части объёма S (см. рис. 54).
Рис. 54
На рисунке изображены отношения между S и Р в случае, когда обе посылки утвердительные. Из рисунка видно, что в этом случае вывод возможен только утвердительный: общеутвердительный (1) и частноутвердительный (2).
Итак, отрицательный вывод никогда не может быть получен пз двух утвердительных посылок.
§ 22. Восьмое общее правило силлогизма формулируется так:
Рис. 55