Связь эта, во-первых, опирается на закон достаточного основания. Только то заключение истинно и принимается в качестве истинного, которое имеет достаточное основание в истинности посылок и в правильности логического хода умозаключения. Во-вторых, связь эта опирается на закон противоречия. Мысля посылки и заключение, мы понимаем, что нельзя, соглашаясь с посылками, не соглашаться с заключением. Если бы, согласившись с тем, что все бамбуки — злаки и что все злаки цветут колосками, наш собеседник стал бы отрицать, что все бамбуки цветут колосками, он тем самым показал бы, что в данном случае он противоречит самому себе, т.е. мыслит непоследовательно, нелогично.
Согласившись, что бамбуки — злаки и что все злаки цветут колосками, но утверждая вместе с тем, будто бамбуки не цветут колосками, наш собеседник тем самым допустил бы то положение, будто существуют злаки, не цветущие колосками. Но это значит, что он признал бы истинным суждение, противоречащее той самой посылке, с которой он уже согласился и которая гласит, что «все злаки цветут колосками». Такой собеседник утверждал бы сразу и то, что «все злаки цветут колосками», и то, что «некоторые злаки не цветут колосками», т. е. нарушил бы закон противоречия.
Логическая связь заключения с посылками опирается, в-третьих, на закон исключённого третьего. И действительно: если собеседник отрицает то, что все бамбуки цветут колосками, то, так как, в силу закона исключённого третьего, кроме суждений «все бамбуки цветут колосками» и «некоторые бамбуки не цветут колосками» невозможно никакое третье суждение об отношении «бамбуков» к «цветущим колосками». Но так как такое третье суждение невозможно, то отрицание истинности суждения «все бамбуки цветут колосками» равносильно утверждению истинности суждения «некоторые бамбуки не цветут колосками». Однако признать истинными наши посылки («бамбуки — злаки», «все злаки цветут колосками») и вместе с тем признать истинным, будто «некоторые бамбуки не цветут колосками», значит нарушить закон противоречия.
Таким образом, закон противоречия и сам по себе и в соединении с законом исключённого третьего действительно обусловливает в умозаключении логическую связь между посылками и заключением. Но связь эта опирается также и на закон тождества. Заключение, выведенное из посылок, не могло бы быть истинным, если бы термины «бамбуки», «злаки», «цветущие колосками», появляющиеся в умозаключении каждый дважды, мыслились не в тождественном смысле, т. е. если бы в умозаключении был бы где-нибудь нарушен закон тождества. Если бы, например, под «злаками» в одной из посылок мыслилось одно содержание, а в другой — иное, то заключение об отношении между «злаками» и «цветущими колосками» из таких посылок не могло бы быть выведено. Заключение это возможно только на основе раскрытого в посылках отношения каждого из этих понятий к понятию «злаки». Но совершенно очевидно, что если понятие «злаки» в обеих посылках не тождественно, то невозможно установить посредством этого понятия никакой логической связи между понятием «бамбуки» и понятием «цветущие колосками».
Таким образом, все четыре логических закона мышления — закон тождества, закон противоречия, закон исключённого третьего и закон достаточного основания — применяются во всех умозаключениях. Без этих законов в умозаключениях не могла бы быть усмотрена логическая связь между посылками и заключением.
Всякое правильное умозаключение раскрывает для нашей мысли необходимое отношение между предметами, которые мыслятся в посылках и в выводе. Так, посылка «все злаки цветут колосками» выражает мысль о том, что свойство цветения колосками есть необходимое свойство всех злаков; поэтому все предметы, называемые злаками, необходимо входят в число «цветущих колосками» (см. рис. 34).
Рис. 34 . . . . . . . . . . . . . . . . . . . . . . . . Рис. 35
На этом рисунке объём понятия «злаки» изображён посредством круга М, объём понятия «цветущие колосками» — посредством круга Р. Из рисунка видно, что все злаки необходимо принадлежат к цветущим колосками, т. е. что все М необходимо принадлежат к Р. Посылка «все бамбуки — злаки» выражает мысль о том, что свойства злаков необходимо являются свойствами бамбуков; поэтому все предметы, называемые «бамбуками», необходимо входят в число злаков (см. рис. 35).
На этом рисунке объём понятия «бамбуки» изображён посредством круга S, объём понятия «злаки» — посредством круга М. Из рисунка видно, что все бамбуки необходимо принадлежат к злакам, т. е. что все S необходимо принадлежат к М. Сопоставляя обе эти посылки, получаем вывод: «все бамбуки цветут колосками». Вывод этот выражает мысль о том, что свойство всех злаков цвести колосками необходимо является также свойством всех бамбуков; поэтому все предметы, называемые «бамбуками», необходимо входят в число «цветущих колосками» (см. рис. 36).
Рис. 36