§ 42. Метод остатков широко применяется в науке при исследовании причинных связей. Во множестве случаев наука открывает причинную связь, исследуя часть явления, получившуюся после вычитания всей остальной части, уже познанной ранее и сведённой к известным причинам. Так, о существовании целого ряда новых химических элементов узнали, установив, что в спектрах некоторых сложных веществ помимо спектральных линий, вызываемых присутствием в этих веществах известных науке элементов, имеются ещё другие спектральные линии. Линии эти не совпадают с линиями известных элементов и потому доказывают присутствие в составе исследуемого сложного вещества каких-то новых, ранее неизвестных элементов.
Тип умозаключения, лежащий в основе метода остатков, не ограничивается в своём применении одними лишь индуктивными выводами о причинной связи. Тот же по существу тип умозаключения находит широкое применение в неиндуктивных несиллогистических выводах, например в некоторых выводах математических наук.
В науках этих постоянно встречаются умозаключения вроде следующего: «Если А+В+С+D = a+b+c+d и если B+C+D = b+c+d, то отсюда следует, что А = а». Вывод этот и бесчисленные выводы, ему подобные, основываются на аксиоме: «Если от равных величин отнять равные величины, то и остатки будут равные». Но аксиома эта, как и схема вывода по методу остатков, представляет с логической точки зрения лишь различные случаи применения одной и той же формы умозаключения — от совокупности к её части.
Логическая особенность всех выводов этого типа состоит в том, что в них умозаключение основывается на рассмотрении уже не отношений между родом и видом или логической группой и предметами этой группы, а на рассмотрении отношений между некоторой совокупностью, представляющей известное целое, и элементами, или частями, этой совокупности. Когда в выводе по методу остатков в одной из посылок вывода утверждается, что обстоятельства ABC — единственные, которые могут быть причиной сложного явления
Этим вывод по методу остатков существенно отличается, например, от силлогизма первой фигуры. Правда, в силлогизме первой фигуры вывод идёт, как и в умозаключении, по методу остатков, также от общего к частному. Но этим общим в случае силлогизма оказывается не совокупность, а род; зная, что всему роду М принадлежит предикат Р и что S принадлежит роду М как его вид, мы заключаем, что предикат Р должен принадлежать также и всему S как одному из видов рода М.
Нетрудно видеть, что здесь предикат Р или определение рода М есть такое определение, которое прилагается не только к совокупности всех предметов, составляющих М, но и к каждому из предметов, составляющих эту совокупность, в отдельности. Это значит, что предикат Р принадлежит не совокупному соединению всех предметов, составляющих род М, но каждому из предметов рода М порознь. Самый вывод состоит здесь в том, что, в силу логического тождества любого предмета вида S с любым предметом рода М, предикат Р каждого предмета рода М должен быть признан в то же время и предикатом каждого предмета вида S, т. е. переносится с рода М на вид S.
5. Метод сопутствующих изменений
§ 43. Видоизменение методов сходства и различия представляет
Рассмотрим пример вывода по методу сопутствующих изменений и выведем его схему.
Посредством метода сопутствующих изменений физик доказывает, например, что причиной всегда наблюдаемого замедления движения является трение.
Согласно известному закону инерции, прямолинейное движение, сообщённое телу, будет продолжаться прямолинейно с той же скоростью до тех пор, пока толчок, сообщённый другим телом, не изменит скорость и направление этого движения.