Читаем Логический атомизм полностью

Использование этого принципа весьма разнообразно, но непонятно в деталях для тех, кто не знает математическую логику. Первый раз, когда я с ним встретился, я назвал его «принципом абстракции» или «принципом освобождения от абстракции». (Имеется в виду «Наше познание внешнего мира как поле для научного метода в философии» (1914) – прим. ред.). Этот принцип применим в случае любого симметричного и транзитивного отношения, такого, как равенство Мы склонны заключить, что подобные отношения возникают из наличия некоторого общего качества. Это может быть или не быть истинным, вероятно, оно истинно в одних случаях и не истинно в других. Однако всем формальным целям общего качества может служить членство в группе терминов, имеющих указанное отношение к данному термину. Возьмем, например, величину. Предположим, что мы имеем группу стержней одинаковой длины. Нетрудно предположить, что существует некоторое качество, названное их длиной, которое является для них общим. Но все утверждения, в которых это предполагаемое качество встречается, будут сохранять свое истинностное значение неизменным, если вместо «длины стержня х» мы возьмем членство группы всех тех стержней, которые имеют ту же длину, «что и х» В различных специальных случаях, например, при определении действительных чисел, возможна более простая конструкция.

Самый важный пример этого принципа – определение Фреге кардинального числа данного множества элементов как класса всех множеств, которые «подобны» данному множеству, где два множества «подобны:», когда существует взаимно-однозначное соответствие, чьей областью служит одно множество, а обратной областью – другое множество. Таким образом, кардинальное число есть класс всех тех классов, которые подобны данному классу. Это определение оставляет неизменным истинностные значения всех утверждений, в которых встречаются кардинальные числа, и избегает заключений к множеству объектов, называемых кардинальными числами, которые никогда не были необходимы, кроме как для понимания арифметики, а теперь больше не нужны и для такой цели.

Возможно, даже более важным является тот факт, что подобными методами можно избавиться от самих классов. Математика полна утверждений, которые, кажется, требуют, чтобы такие классы или агрегаты должны были быть в некотором смысле отдельными сущностями, например, утверждение «число комбинаций из п вещей любого числа есть 2». Поскольку 2" всегда больше, чем п, то это утверждение приводит к трудностям, если допускаются классы, потому что число классов сущностей в универсуме больше, чем число сущностей в нем, которые будут лишними, если классы окажутся среди сущностей. К счастью, все утверждения, в которых появляются классы, могут интерпретироваться без предположения, что существуют классы. Это, возможно, наиболее важное из всех применений нашего принципа. (См. "Principia Mathematical, 20).

Другой важный пример относится к тому, что я называю «определенными дескрипциями», то есть к таким фразам, как «четно простое», «нынешний король Англии», «нынешний король Франции». Всегда было трудно интерпретировать такие утверждения, как «нынешний король Франции не существует». Трудность возникает здесь благодаря тому, что «нынешний король Франции» является субъектом этого утверждения, который делает необходимым предположить его существование, хотя он и не существует. Но эта трудность приписывает существование даже «круглому квадрату» или «четному простому числу, большему, чем 2» Фактически получается, что «круглый квадрат не существует» так же верно, как и «нынешний король Франции не существует». Даже различие между реальным (existence) и идеальным существованием (subsistence) не помогает нам. Факт, что когда слова «то-то и то-то» встречаются в утверждении, то не имеется никакого отдельного соответствующего им конституента утверждения, и когда утверждение анализируется полностью, то слова «то-то и то-то» исчезают. Важным следствием теории дескрипций является то, что бессмысленно говорить, что «A существует», если "A" не является (или не обозначает) фразой формы «то-то и то-то». Если то-то и то-то существует, а x есть то-то и то-то, тогда говорить «x существует» бессмысленно.

Существование в том смысле, в котором оно приписывается отдельным объектам, тем самым полностью устраняется из списка основных принципов. Этот онтологический аргумент и большинство его опровержений находятся в зависимости от плохой грамматики (См. «Principia Mathematica», 14).

Существует много других примеров замены построений для заключений в чистой математике, например, ряды, ординальные числа, действительные числа. Но я перейду к примерам из физики.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия