В нашем примере в обеих частях условного суждения — и в основании, и в следствии — одно и то же
Пусть даны два разделительных суждения, у которых будут общими один из субъектов и один из предикатов:
Преобразуем эти разделительные суждения в условные:
если
если
Нетрудно заметить, что следствие первого суждения является основанием второго. Отсюда:
если
Эта формула выражает наиболее общий случай условного суждения, пример которого приводился выше (если мороз усилится, река замерзнет). Из такого суждения можно получить как частные случаи все другие виды условных суждений.
Таковы основные виды суждений.
4. Умозаключение
Суждения, так же как и понятия, не существуют сами по себе, вне связи с другими суждениями. Они связываются. между собой, образуя более сложные мысли, более сложные логические формы. Примеры такой связи суждений у нас уже были выше:
все млекопитающие дышат легкими;
дельфин — млекопитающее;
———————————————
дельфин дышит легкими;
или:
имена собственные пишутся с большой буквы;
«Крым» — имя собственное;
———————————————
«Крым» пишется с большой буквы,
Логическая форма, которую образует такого рода связь суждений, называется
В чем же сущность умозаключения как логической формы? Далеко не всякая связь суждений будет умозаключением. Умозаключением являются лишь такие соотношения суждений, при которых истинность или ложность одних из этих суждений обусловливает истинность или ложность других. Так, истинность суждения «„Крым“ пишется с большой буквы» вытекает из истинности суждений «имена собственные пишутся с большой буквы» и «„Крым“ — имя собственное».
Если каждое суждение выражает то, что уже известно, то умозаключение — это такая сложная мысль, в которой на основе известного получается новое знание. Новое знание, то есть суждение, которое получается как результат умозаключения, называется
Умозаключения, так же как понятия и суждения, бывают разных типов.
При делении умозаключений важнейшим является вопрос о том, откуда берется в умозаключении вывод, которого нет в посылках? На каком основании и в какой мере можно быть уверенным в том, что если посылки истинны, то заключение также будет истинно?
Мы можем получать вывод из посылок путем более или менее сложного преобразования последних. Выше был приведен пример такого преобразования, когда из двух разделительных суждений было получено условное.
Поскольку вывод здесь получается лишь на основе преобразования посылок, его истинность в данном случае целиком определяется истинностью посылок, если, разумеется, это преобразование производится правильно. Правила же этих преобразований в свою очередь, естественно, обусловливаются, как будет дальше показано, формой посылок. Умозаключения такого типа будем называть