Реальна ли геометрия Лобачевского в смысле соответствия физическому пространству, существует ли поверхность, на которой справедлива новая геометрия, или же она бесполезный плод фантазии, досужий вымысел, игра воображения, формальное доказательство независимости пятого постулата от других эвклидовых аксиом? Какая из двух геометрий с большей точностью описывает реальный мир?
Шаг за шагом мы проследили, как Лобачевский подходил к открытию новой геометрии, проследили в той мере, в какой возможно рассказать о сокровенной, тончайшей работе гениального ума, где из хаоса мимолетных наблюдений на основе опыта и интуиции рождается небывалая истина, постепенно выкристаллизовывающаяся в виде четкой формулы.
Первое значительное открытие Лобачевского состояло в доказательстве независимости пятого постулата геометрии Эвклида от других положений этой геометрии.
Вторым открытием была уже сама логически непротиворечивая система новой геометрии. На свою геометрию он смотрел именно как на теорию, а не как на гипотезу.
Придя к логическому заключению, что в мировом пространстве, а возможно и в микрокосме, сумма углов треугольника должна быть меньше двух прямых, Лобачевский смело выдвинул свою исходную аксиому, свой постулат и построил необычную геометрию, так же, как и эвклидова, лишенную внутренних противоречий. Воображаемой назвал не потому, что считал ее формальным построением, а потому, что она пока оставалась доступной лишь воображению, а не опыту. Его не покидала мысль вновь вернуться к измерению космических треугольников и установить истину.
Ничего не меняя в «абсолютной» геометрии, он лишь заменил пятый постулат антипостулатом, антиэвклидовой аксиомой: через указанную точку можно провести множество прямых, не пересекающих данную.
На чертеже это выглядит так:
Лобачевский изменил само понимание параллельных линий. У Эвклида непересекающиеся и параллельные — одно и то же, у Лобачевского: из всех, не пересекающих данную прямую
Поэтому постулат уточняется: если дана прямая
Параллельными Лобачевский, следовательно, называет такие, которые отделяют непересекающие от пересекающих данную прямую
Расстояние между прямой
Плоскость, в которой существуют такие параллельные, принято называть плоскостью Лобачевского. Эта плоскость вовсе не «плоская» в эвклидовом смысле.
В эвклидовой плоскости угол параллельности неизменен и всегда равен 90°; в геометрии Лобачевского он может принимать все значения — от 0 до 90°. Следовательно, эвклидова геометрия есть частный (предельный) случай геометрии Лобачевского, в которой угол параллельности переменный.
Геометрически величина угла параллельности зависит от длины
Весьма условно на чертеже это можно было бы представить так:
Другими словами: когда точка
Таким образом, в новой геометрии существует взаимозависимость угла и отрезка. Когда угол параллельности прямой, то есть равен 90°, взаимозависимость исчезает. В эвклидовой геометрии ее нет. В неэвклидовой она представляет наиболее значительный момент.
Из этой взаимозависимости выводится основная формула всей геометрии Лобачевского.
В формулу Лобачевский вводит так называемую линейную константу. В современной науке под линейной константой понимают радиус кривизны пространства Лобачевского; величина константы зависит от конкретных физических условий в данной части мирового пространства. Исключительно большая величина константы свидетельствует о том, что наше пространство обладает огромным радиусом кривизны и, следовательно, довольно малой, близкой к нулю, кривизной, то ecть пространство в нашей части вселенной имеет плоский, эвклидов характер.
Но если допустить, что линейная константа может иметь разные значения, то каждому из подобных значений будет соответствовать своя, особая геометрия. Следовательно, может иметь место безграничное количество разных геометрий. Для Канта пространство — неизменная сущность; для Лобачевского — оно форма существования материи. Пространство способно изменяться вместе с материей.