Во втором случае по решении установится вид:
ход же рассуждения будет таков. Начинаем с деления 27 на 7 и вычитания частного, 3, из числа, образованного добавлением в качестве префикса остатка, 6, к следующей цифре, 9; то есть говорим: «3 из 69 будет 66». Затем делим это 66 на 7 и вычитаем частное, 9, из числа, образованного добавлением в качестве префикса остатка, 3, к следующей цифре, 1; то есть говорим: «9 из 31 будет 22». Затем говорим: «3 из 10 будет 7, 1 из 3 будет 2, 0 из 28 будет 28, 4 из 5 будет 1, 0 из 16 будет 16, 2 из 24 будет 22, 3 из 15 будет 12, 1 из 55 будет 54, 7 из 58 будет 51, 7 из 23 будет 16, 2 из 26 будет 24, 3 из 31 будет 28, 4 из 1 [вычесть] нельзя, но (тут мы вбрасываем добавочный делитель) 4 из 72 будет 68».
§3. Степени 10
«Остаток-10» есть последняя цифра, «остаток-102» есть число, образованное двумя последними цифрами и так далее.
Эти остатки годятся в качестве начальных делимых для всех чисел, множители которых есть степени множителей 10, тот есть [степени чисел] 2 и 5. Так, «остаток-32» можно найти, взяв число, образованное последними пятью цифрами и разделив его на 32. Точно так же 80 есть 24 × 5; следовательно, «остаток-104» годится для того[, чтобы найти «остаток-80»].
§4. Множители делителей вида
«Остаток-21» годится в качестве начального делимого для 7 (множитель [числа 21] есть также множитель 9). Но этот остаток (из-за малой величины
«Остаток-39» годится для 13, [остаток-] 51 — для 17, [остаток-] 69 — для 23.
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
ДРУГИЕ АРИФМЕТИЧЕСКИЕ РАБОТЫ
Мистер Эскью в письме №1274 от 30 мая спрашивает о доказательстве метода установления делимости числа на семь, которое, как он утверждает, открыто мистером Рикардом из Бирмингема. Оно, возможно, многими открыто; к примеру, моим отцом, который обучил меня ему лет тридцать назад. Проверочное число одинаково полезно для 7, 11 и 13. Метод, разработанный моим отцом, даёт, в случае делимости числа на все эти три величины, также ещё одну величину без дальнейшего труда; и в этом отношении он имеет преимущество перед методом мистера Рикарда.
Если некое число N разметить, начиная с правого конца, на периоды в три разряда, обозначив эти периоды через
N =
M =
Тогда
N – M =
и делимо на (
Правило моего отца состояло в том, чтобы поместить самый правый период под следующим и произвести вычитание, поместив остаток вновь под следующим периодом и так далее. В последнем периоде вычитание производится
Если случится так, что проверочное число окажется равным нулю, то вторая строка сделается частным от деления данного числа на 1001, то есть множителем, остающимся после сокращения на 7, на 11 и на 13. В самом деле, обозначим вторую строку через V; приписывая в конце три нуля, получаем 1000V; а мы знаем, что если вычесть её из верхней строки, то остатком будет V. Следовательно, N = 1001V = 7 × 11 × 13 × V. Если бы в вышеприведённом примере крайний левый разряд составлял 932 вместо 8, то проверочное число оказалось бы нулём.
Если такие периоды составить из
С периодами по два разряда мы получаем критерий делимости на 101; то же для четырёх или более разрядов.
Ч. Л. Доджсон
К. Ч., Оксфорд