Так и при изучении природных явлений мы должны согласовать разрешающую способность модели климата с нашими потребностями и задачами. Чересчур «сильная» модель потребует больше времени для своего анализа. Модель же малой разрешимости может не заметить и упустить важные детали. Для исследования региональных особенностей климата и обоснованных оценок продуктивности естественных и искусственных ценозов модель климата должна различать на поверхности земли квадраты размерами порядка 4–5 градусов по широте и долготе. Только в этом случае можно достаточно хорошо выделить основные промышленные и сельскохозяйственные регионы, например отличить климат Поволжья от климата Центральной России. Кроме того, модель должна допускать реальную возможность анализа эволюции климата в течение нескольких десятилетий.
Проведя с этих позиций сравнение имеющихся в нашем распоряжении многочисленных моделей глобальной циркуляции атмосферы, мы в ВЦ АН СССР остановили свой выбор на одной американской модели (так называемой модели Гейтса — Минца — Аракавы). Эта гидротермодинамическая модель атмосферы была создана в интересах прогноза погоды, но для подобных целей она оказалась чересчур грубой, поскольку это, по существу, двухслойная модель тропосферы и она не учитывает целый ряд деталей, важных для предсказания погоды на ближайшее время. Для наших же целей ее точность была более чем достаточна. Нас устраивало, что она учитывает не только реальное распределение материков и океанов, но и распределение горных систем, характер ледяного и снежного покрова и т. д.
Эта модель обладала еще одним достоинством — она давала весьма полную картину источников и стоков энергии, которые формируются в атмосфере за счет солнечной радиации и фазовых переходов воды, содержащейся в атмосфере и в подстилающей поверхности, в пар, в лед, в снег или в воду. Это очень важное достоинство модели. В самом деле, перенос влаги, сопровождаемый испарением и конденсацией воды, возникновением и исчезновением облаков, играет колоссальную роль в механике и энергетике атмосферы. Достаточно сказать, что на испарение затрачивается около трети всего поглощаемого планетой солнечного тепла.
Как, наверное, уже обратил внимание читатель, мы все время употребляем термин «модель климата», В действительности же это некоторая «система моделей», описывающих все те процессы, которые в своем взаимодействии и определяют климат. Подобно тому как современное здание состоит из отдельных, но связанных между собой блоков, система моделей климата — это тоже конструкция, обладающая собственной архитектурой. Кроме блока моделей, отражающих процессы, протекающие в атмосфере, в Системе моделей климата должен присутствовать и блок моделей, описывающих состояние океана, который в наибольшей степени определяет структуру климата, изменение его характеристик.
Выбор модели океана, то есть способ описания его динамики, тоже очень не прост. С одной стороны, эта модель не должна быть очень сложной и допускать возможность проведения многократных пересчетов, а с другой — она должна учитывать основные особенности обмена энергией, а также потоки влаги и углекислоты в зависимости от широты и долготы.
Пробный анализ показал, что эти сложнейшие процессы обладают одним важным свойством, которое нам позволяет упростить модель. Дело в том, что океан очень инерционен и существенная перестройка его состояния требует сотен лет! Поэтому если мы хотим изучить тенденции изменения климата, которые может создать человеческая деятельность в течение десятков лет, то мы можем не учитывать движения глубинных океанических вод. Это обстоятельство сильно упрощает исследование. Оно позволяет воспользоваться достаточно простой моделью взаимодействия атмосферы и океана, разработанной в главной геофизической обсерватории в Ленинграде (профессор Е. Борисенков).
К числу перечисленных моделей следует добавить еще модель образования морского льда, динамику материкового льда и т. д.
Наконец, нам нужны не просто уравнения, описывающие изменения гидротермодинамических элементов атмосферы и океана, но и статистическая модель, прослеживающая эволюцию таких характеристик, как средняя температура, влажность, облачность и т. д.
Не будем подробно описывать все те трудности, преодоление которых необходимо для завершения подобного исследования. Пока еще мы далеки от окончания этой работы. Но первый шаг уже сделан: как говорят кибернетики, модель может «считать». Конечно, еще далеко не все, еще очень медленно, но тем не менее она «считает»! И мы уже видим, что та, казалось бы, фантастическая задача, которая была поставлена в середине 70-х годов, не столь уж фантастична. Может быть, пройдет 10–15 лет, и с этим инструментом анализа климатических изменений ученые начнут работать так же, как, например, работают сейчас с системой расчетов ядерных реакторов и электростанций.