Читаем Лестница Шильда (ЛП) полностью

{8}. F. Verstraete, J.I. Cirac, V. Murg (2008). «Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems». Adv. Phys. 57 (2008), 143.

{9}. J. I. Cirac, F. Verstraete (2009). «Renormalization and tensor product states in spin chains and lattices». J. Phys. A 42 (2009), 504004.

{10}. V. Turaev (2010). «Quantum invariants of knots and 3-manifolds». 2nd revised edition, de Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter and Co., Berlin, 2010.

{11}. М. Baake, M. Birkner, R. V. Moody (2010). «Diffraction of stochastic point sets: Explicitly computable examples». Commun. Math. Phys. 293,611.

{12}. L. Freidel, J. Hnybida (2012). «On the exact evaluation of spin networks».

{13} E. Jonckheere, F. Langbein, S. Schirmer (2012). «Curvature of spin networks».

<p>ПРИЛОЖЕНИЯ<a l:href="#n_124" type="note">[124]</a></p>Внешний вид Барьера

Барьер нововакуума представляет собой поверхность сферы, расширяющейся на скорости 0,5с. Его внешний вид в небе той или иной планеты определяется тем фактом, что, глядя вдаль от ближайшей точки Барьера, наблюдатель заглядывает в прошлое и видит Барьер в момент времени, когда его размеры были меньше.

На указывают фактические размеры Барьера в пять различных моментов времени, а — кажущиеся размеры и форму в восприятии неподвижного наблюдателя (также отмечен на рисунке), ожидающего прибытия света от Барьера. Математическое выражение для формы этих кривых легко получить, заметив, что время t, прошедшее с момента зарождения нововакуума, равно 2t1+ t2, где t1 — расстояние от центра Барьера до точки на кривой, a t2 — расстояние от этой точки до наблюдателя.

очерчивают кажущийся край Барьера и представляют собой касательные к синим кривым. Они показывают путь света, задевшего Барьер, когда его размеры значительно уступали нынешним. Поэтому Барьер затеняет меньший участок небосклона, чем в том случае, если бы его размеры все время оставались такими. И даже в последний показанный на рисунке момент времени, когда Барьер нависает непосредственно над нашим наблюдателем, сектор небесной сферы, отсеченный им, составит лишь 120 градусов.

На . показано, как растет угловой видимый размер Барьера с течением времени. Переменный светового излучения Барьера изображен схематически по контуру поверхности. Точное значение фактора синего смещения варьирует от V‾З = 1,732 в центре до 2/V‾З = 1,1547 по краю. Допплеровский сдвиг на краю поля зрения остается неизменным по мере расширения Барьера, поскольку наблюдаемый там свеn всегда излучается под углом 90 градусов к направлению распространения (в системе отсчета, движущейся вместе с соответствующим сегментом Барьера).

Спиновые сети: только бы соединить…

Понемногу складывается впечатление, что известный афоризм Э. М. Форстера[125] — излишество. Теория, для которой строительными блоками Вселенной выступают математические структуры — — которые соединяются друг с другом, а больше-то и не делают.

Граф можно представить в виде множества точек — , и набора линий, соединяющих эти узлы — Детали построения, например, длина и форма ребер, вообще говоря, безразличны для структуры графа. Единственная черта, по которой можно отличить один граф от другого — тип связывания узлов. Число ребер, сходящихся в один и тот же узел, называется его

В квантовой теории графов, или КТГ, квантовое состояние, описывающее как геометрию пространства, так и поля материи, присутствующей в нем, построено из комбинаций графов. Теория обрела нынешнюю форму в работах яванского математика Куснанто Сарумпета, который в серии из шести статей, опубликованных с 2035 по 2038 гг., показал, что как общая теория относительности (ОТО), так и Стандартная Модель физики элементарных частиц (СМ) представляют собой аппроксимации единой теории — КТГ.

Перейти на страницу:

Похожие книги