При немного меньшей степени разряжения, которую можно назвать обычным «неударным» вакуумом, и когда частицы вещества в основном движутся по прямой, экран всё еще хорошо работает. Для того чтобы пояснить предыдущее высказывание, необходимо сказать, что то, что есть «неударный» вакуум для катушки, работающей, как обычно, от импульсов, или тока низкой частоты, не является даже близко таковым, когда катушка работает от тока очень высокой частоты. В таком случае разряд очень свободно может пройти через разреженный газ, через который может не пройти низкочастотный разряд, даже если потенциал будет гораздо выше. При нормальном атмосферном давлении имеет место противоположное правило: чем выше частота, тем меньше вероятность пробоя искры между выводами, особенно если это разрядные головки или шары определенного размера.
И наконец, при низкой степени разряжения, когда газ хорошо проводит ток, металлическая трубка не только не действует, как электростатический экран, но и является недостатком конструкции, усиливающим боковое рассеивание энергии от подводящего провода. Этого, конечно, следует ожидать. В данном случае металлическая трубка хорошо контактирует с подводящим проводом и большая часть бомбардировки направлена на трубку. Если электрический контакт слаб, то трубка всё-таки полезна, хотя она, может быть, и не экономит энергию, но всё же защищает опору элемента накаливания, а также служит для концентрации энергии на нем.
Если алюминиевая трубка призвана выполнять функцию экрана, то ее полезность ограничивается степенью откачки воздуха, когда она изолирована от электрода, то есть, когда газ в целом не проводник, и молекулы или атомы действуют как независимые отдельные носители зарядов.
В дополнение к работе в качестве эффективного экрана, в истинном понимании этого слова, токопроводящая трубка или покрытие могут также играть роль, по причине своей токопроводимости, компенсатора или демпфера во время бомбардировки стеклянной ножки. Предположим следующую ситуацию: при ритмической бомбардировке проводящей трубки, по причине ее несовершенства как экрана, обязательно должно случиться так, что некоторые молекулы или атомы ударят по трубке ранее других. Те, что ударятся первыми, отдадут свой избыточный заряд, и трубка наэлектризуется, причем электризация моментально распространится по ней. Но это должно уменьшить количество энергии, теряемой при бомбардировке по двум причинам: первая — заряд, отданный атомами, распространяется по большому участку поверхности, следовательно, электрическая плотность в любой точке уменьшается и атомы отталкиваются с меньшей энергией, чем если бы они ударились о хороший изолятор; вторая — так как трубка наэлектризована атомами, которые первыми вступили с ней в контакт, продвижение следующих атомов к трубке затрудняется отталкивающей силой, с которой трубка должна воздействовать на одинаково заряженные атомы. Эта сила должна оттолкнуть значительное количество атомов от трубки и, во всяком случае, уменьшить энергию их удара. Ясно, что чем ниже уровень разреженности, тем лучшим проводником является газ, и ни один из вышеуказанных эффектов не может иметь место, а, с другой стороны, чем меньше количество атомов, тем с большей скоростью они движутся; иными словами, чем тщательнее откачан воздух, до определенного предела, тем более отчетливыми будут оба явления.
То, что я сейчас сказал, может служить объяснением явлению, наблюдавшемуся профессором Круксом, а именно: разряд в колбе гораздо сильнее, когда в ней находится изолятор, а не проводник. По моему мнению, проводник служит демпфером для движущихся атомов двумя указанными способами, поэтому для того чтобы сформировать видимый разряд, требуется гораздо более высокий потенциал, если в колбе проводник, имеющий значительную площадь поверхности.
Для того чтобы разъяснить эти высказывания, я должен обратиться к рисункам 18, 19 и 20, на которых показаны различные конструкции широко применяемых ламп.
На рисунке 18 показана в разрезе сферическая лампа
На рисунке 19 показана такая же лампа, но уже усовершенствованная. Металлическая трубка