Читаем Лекции полностью

Но такая лампа обладала бы огромным преимуществом перед обычной лампой накаливания с точки зрения КПД. Хорошо известно, что КПД лампы — это в определенной степени функция степени накаливания и что если бы мы могли накаливать нить в несколько раз сильнее, то КПД был бы выше. В обычной лампе это непрактично вследствие разрушения нити, и опытным путем было определено, насколько сильно мы можем ее раскалить. Нельзя сказать, насколько бы увеличился КПД, если бы нить могла выдерживать накаливание беспредельно, так как исследования в этом направлении могут продолжаться до определенного этапа; но есть причины полагать, что этот фактор возрос бы значительно. Можно улучшить лампу, применив короткую и тонкую угольную нить, но тогда провода подводки должны быть толстыми, и, кроме того, есть несколько других соображений, делающих эту модель непрактичной. Но в такой лампе провода подводки могут быть очень маленькими, преломляющий материал может состоять из образцов, излучающая поверхность которых очень мала, так что меньше энергии потребуется для того, чтобы поддерживать надлежащий уровень нагрева; и вдобавок ко всему материалом накаливания не обязательно должен быть уголь, это может быть смесь оксидов, или можно выбрать иной материал, являющийся плохим проводником или диэлектриком, который может выдерживать высокую температуру.

Всё это указывает на возможность получения большего КПД в такой лампе, чем тот, что можно получить в обычных лампах накаливания. Мой опыт показывает, что образцы могут светиться при меньшем напряжении, чем показывают расчеты, и что образцы можно расположить на большем расстоянии друг от друга. Мы можем свободно предположить, и это возможно, что молекулярная бомбардировка — это важный элемент нагрева, даже если воздух из колбы тщательно откачан, как это делал я; и хотя количество молекул сравнительно невелико, всё же по причине длинного среднего их пути столкновений меньше и молекулы развивают большую скорость, так что эффект нагревания благодаря этому может выражаться гораздо сильнее, чем в опытах Крукса с излучающими веществами.

Но есть вероятность и того, что здесь мы столкнемся с возросшей возможностью потерять заряд в вакууме, когда потенциал быстро меняется, в этом случае нагрев большей частью происходит вследствие волнообразного образования зарядов в нагретом теле. Либо наблюдаемый эффект можно в целом объяснить теми моментами, которые я упоминал выше, вследствие чего образцы нити накаливания, помещенные в вакуум, подобны конденсаторам с поверхностью во много раз большей, чем их геометрические размеры. Ученые до сих пор расходятся во мнении, теряется или нет заряд в абсолютном вакууме или, другими словами, является он проводником или нет. Если первое, тогда тонкая нить, помещенная в абсолютный вакуум и соединенная с источником постоянного тока очень большого напряжения, нагревалась бы и светилась.

Я создал и эксплуатировал много типов ламп, основанных на вышеописанном принципе с преломляющими телами в форме нитей (рисунок 20), или блоков (рисунок 21), и всё еще продолжаю исследования в этом направлении. Совсем нетрудно достичь такой высокой степени нагрева, что обычный уголь плавится и улетучивается. Если бы можно было получить абсолютный вакуум, такая лампа, хотя ее и нельзя эксплуатировать с теми приборами, которые есть в настоящее время, могла бы, при надлежащих условиях, стать осветительным прибором, который никогда не ломается, и имеет гораздо больший КПД, чем обычная лампа накаливания. Такого совершенства, конечно, никогда не достичь, всегда происходит медленное разрушение и постепенное истончение, как у нитей накаливания; но невозможен и преждевременный выход из строя, который вызывается обрывом нити накаливания, особенно когда излучающие предметы в форме блоков.

Когда потенциал быстро меняется, нет необходимости помещать два блока в колбу, нужен только один, как на рисунке 19, или нить, как на рисунке 22. Потенциал в этом случае должен быть гораздо выше, но его легко получить, и к тому же он необязательно опасен.

Когда все остальные показатели равны, лампа доводится до свечения в зависимости от размеров колбы. Если бы можно было получить абсолютный вакуум, размер колбы не имел бы значения, ибо нагрев происходил бы только за счет импульсных зарядов, и вся энергия отдавалась в окружающую среду в форме излучения. Но на практике этого достичь нельзя. В колбе всегда остается газ, и хотя он откачивается максимально возможно, всё же пространство внутри колбы можно рассматривать в качестве проводника, когда применяется высокое напряжение, и я полагаю, что оценивая количество энергии, отдаваемое нитью в окружающую среду, мы должны рассматривать внутреннюю поверхность колбы как одну обкладку конденсатора, а воздух и другие предметы, окружающие колбу, как другую обкладку.

Перейти на страницу:

Похожие книги

1937. Трагедия Красной Армии
1937. Трагедия Красной Армии

После «разоблачения культа личности» одной из главных причин катастрофы 1941 года принято считать массовые репрессии против командного состава РККА, «обескровившие Красную Армию накануне войны». Однако в последние годы этот тезис все чаще подвергается сомнению – по мнению историков-сталинистов, «очищение» от врагов народа и заговорщиков пошло стране только на пользу: без этой жестокой, но необходимой меры у Красной Армии якобы не было шансов одолеть прежде непобедимый Вермахт.Есть ли в этих суждениях хотя бы доля истины? Что именно произошло с РККА в 1937–1938 гг.? Что спровоцировало вакханалию арестов и расстрелов? Подтверждается ли гипотеза о «военном заговоре»? Каковы были подлинные масштабы репрессий? И главное – насколько велик ущерб, нанесенный ими боеспособности Красной Армии накануне войны?В данной книге есть ответы на все эти вопросы. Этот фундаментальный труд ввел в научный оборот огромный массив рассекреченных документов из военных и чекистских архивов и впервые дал всесторонний исчерпывающий анализ сталинской «чистки» РККА. Это – первая в мире энциклопедия, посвященная трагедии Красной Армии в 1937–1938 гг. Особой заслугой автора стала публикация «Мартиролога», содержащего сведения о более чем 2000 репрессированных командирах – от маршала до лейтенанта.

Олег Федотович Сувениров , Олег Ф. Сувениров

Документальная литература / Военная история / История / Прочая документальная литература / Образование и наука / Документальное
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 знаменитых чудес света
100 знаменитых чудес света

Еще во времена античности появилось описание семи древних сооружений: египетских пирамид; «висячих садов» Семирамиды; храма Артемиды в Эфесе; статуи Зевса Олимпийского; Мавзолея в Галикарнасе; Колосса на острове Родос и маяка на острове Форос, — которые и были названы чудесами света. Время шло, менялись взгляды и вкусы людей, и уже другие сооружения причислялись к чудесам света: «падающая башня» в Пизе, Кельнский собор и многие другие. Даже в ХIХ, ХХ и ХХI веке список продолжал расширяться: теперь чудесами света называют Суэцкий и Панамский каналы, Эйфелеву башню, здание Сиднейской оперы и туннель под Ла-Маншем. О 100 самых знаменитых чудесах света мы и расскажем читателю.

Анна Эдуардовна Ермановская

Документальная литература / История / Прочая документальная литература / Образование и наука / Документальное