Постоянные усилия, направленные на усовершенствование разнообразных автоматических приспособлений для контроля тока питания, четко выявили ограниченность таковых вследствие их механики, и идея использования конденсаторов, как средства получения, независимо от таких механических устройств, внезапных изменений параметров тока, которые необходимы в прикладных областях, является удачным и своевременным решением. В таком новом для всех процессе механические средства выполняют лишь незначительную функцию, а именно: периодически заставляют колебаться электромагнитную систему, и они должны лишь удовлетворять требованиям надежности в работе и долговечности (этим могут заняться механики), которых, в определенной степени, мне нетрудно было добиться во многих устройствах.
Итак, памятуя о том, что скорость изменения разряда или первичного тока в таких приборах в основном зависит от физических констант контура, через который происходит разряд, становится очевидным, что необходимо правильно сконструировать такой контур, и во время опытов, которые я проводил с этой целью, мною были сделаны небезынтересные наблюдения.
Во-первых, можно сделать очевидное заключение: поскольку первичная обмотка в таком трансформаторе обычно состоит из нескольких витков медной ленты с сопротивлением, которым можно пренебречь, то и изоляция между витками не требует особого внимания. Но практический опыт вскоре убеждает нас в нашей ошибке, ибо часто случается так, что вследствие огромного резонансного подъема, разность потенциалов на соседних витках достигает такого значения, что происходит пробой даже при использовании очень хорошей обычной изоляции. По этой причине я счел необходимым поступить с первичной обмоткой таким же образом, как было описано выше, добившись твердости, которая получается в результате вытягивания металлических пластин и уплотнения изолирующих слоев во время нагревания в вакууме и последующего сжатия металла во время охлаждения до нормальной температуры после того, как диэлектрик затвердел.
Затем экспериментатор будет удивлен, обнаружив важность правильного выбора длины первичной обмотки и способа ее соединения. Он, естественно, готов увидеть, что, поскольку разрядный контур невелик, включение в этот контур небольшой индуктивности или фрикционного сопротивления даст ощутимую разницу в результате, например, в длине искры на вторичной обмотке. Но он, конечно, не ожидает того, что иногда даже четверти дюйма провода достаточно для получения зримого эффекта. В качестве примера: несложно при помощи такого аппарата получить искру длиной несколько футов, а удалив или добавив к первичной обмотке дюйм толстого медного провода, можно сократить искру наполовину. Наблюдения такого рода впечатляют экспериментатора необходимостью точной настройки контуров и определения их констант. Его внимание, помимо его воли, привлекается тогда к преимуществам, которые можно получить от снижения самоиндукции и сопротивления разрядной цепи, причем первое обеспечивает наибольшую частоту вибраций, и второе — экономию. Он также начинает понимать важность сведения к минимуму длины и сопротивления всех соединительных частей и проводов. Хорошо сконструированный прибор и его разрядный контур должны иметь не более пяти процентов неактивного проводника, его сопротивление должно быть крайне малым, а самоиндукция не должна составлять более нескольких сот сантиметров. Я обнаружил, что практически обязательно для постройки первичной обмотки надо применять тонкую медную ленту, и именно ее использование позволило сделать некоторые любопытные наблюдения. Выяснилось, что при определенных условиях в процессе работы первичная обмотка становится ощутимо прохладнее. Довольно длительное время я сомневался в таком результате, пока не доказал положительно, что это происходит вследствие эффекта Томсона, когда тепло от первичной обмотки передается на пластины конденсатора.