Если на живое существо оказывать внешнее неблагоприятное воздействие, оно отреагирует попыткой снизить влияние этого воздействия. Когда приходит холодное время года, птицы улетают в теплые края. Многие животные во время дождя прячутся под деревьями, в расщелинах скал или забираются в нору, чтобы не намокнуть. Антилопа, увидев подкрадывающегося тигра, старается убежать как можно быстрее. Если в помещении заметно похолодало, то мы постараемся надеть теплую одежду. Все это привычно и естественно. Необычно то, что подобным образом ведут себя многие химические реакции. Речь идет об очень крупной группе реакций, называемых равновесными. В них исходные продукты превращаются в конечные, а те, в свою очередь, могут превращаться в исходные: А + Б ⇄ C + D. В тот момент, когда скорости прямого и обратного процесса оказываются равны, возникает равновесие, и содержание всех веществ не изменяется. Подобное состояние возникает во многих реакциях, протекающих в газовой фазе и в растворе. Однако зачастую химиков это не устраивает – если нужно получить как можно больше конечных продуктов C и D, то равновесие необходимо сдвинуть. В решении проблемы помогает принцип Ле Шателье: если на реагирующую систему воздействовать определенным образом, то она сдвинется в том направлении, которое позволит снизить влияние этого воздействия (очень похоже на ответную реакцию живого существа). В химии существует три основных способа воздействия на реагирующую систему: а) понижение или повышение температуры; б) повышение или понижение давления; в) изменение концентрации одного из участников реакции. Третий способ самый очевидный и удобный. Если один из продуктов реакции, проходящей в растворе, выпадает в осадок, то его концентрация в реагирующей среде падает, и система старается восполнить его отсутствие. Соответственно, равновесие сдвигается в сторону образования уходящего из реакции (выпадающего в осадок) вещества. Приблизительно так же каждый из нас, замечая, что у него кончаются денежные средства, старается заработать еще. Вот пример равновесной реакции: смешаем растворы нитрата натрия (натриевая селитра) и хлорида калия:
Все четыре вещества растворимы в воде, и никакого взаимодействия мы не увидим. Тем не менее сдвинуть равновесие вправо, то есть в сторону образования получающихся продуктов, все же возможно. Дело в том, что растворимость NaCl в воде почти не зависит от температуры, а растворимость KNO3 заметно зависит – при переходе от комнатной температуры к 100 оС она возрастает в 18 раз. Если мы смешаем горячие насыщенные растворы NaNO3 и KCl и охладим смесь, то начнут выпадать кристаллы калиевой селитры KNO3, которая очень плохо растворяется в холодной воде. В растворе концентрация KNO3 понизится, и равновесие сдвинется в сторону образования исчезающего из раствора вещества, то есть система постарается компенсировать возникшее нарушение равновесия. В конечном итоге в растворе останется почти чистый NaCl. Рассмотренная реакция в свое время сыграла заметную роль в развитии важного технологического процесса. До середины XIX в. черный (дымный) порох изготавливали смешением угля, серы и калиевой селитры, которую добывали из редкого и дорогого минерала – «индийской селитры». Запасы этого минерала быстро исчерпались. На смену пришли громадные запасы чилийской селитры – продукта тысячелетнего разложения птичьего помета, называемого гуано. Проблема состояла в том, что чилийская селитра содержала нитрат натрия NaNO3, который при хранении впитывает влагу воздуха, – зато этот недостаток отсутствует у KNO3. Рассмотренная выше реакция позволила решить проблему. И это согласуется с известной поговоркой «Держи порох сухим!».
Наиболее привлекательны реакции, в которых равновесие сдвигается само, без всякого внешнего воздействия, – например, когда продукт реакции выделяется в виде газа (фактически это необратимая реакция). Взаимодействие карбоната натрия (соды) и кислоты сопровождается удалением газообразного СО2:
Na2СО3 + 2HCl → 2NaCl+ H2O + CO2↑
Итак, возможны случаи, когда для того, чтобы сдвинуть равновесие, не требуется прикладывать никаких специальных усилий, но такое происходит далеко не всегда. Рассмотрим синтез аммиака из азота и водорода – один из самых важных процессов промышленной химии: