https://yadi.sk/i/vVWVvovpvQzuqw
Прежде чем начинать работать, матричная РНК, содержащая скопированную информацию, направляется в малый фрагмент рибосомы и там закрепляется. Затем к процессу подключается другая РНК, называемая транспортной, и «привозит на себе» нужную аминокислоту. Молекула транспортной РНК, нагруженная определенной аминокислотой, располагается около определенного участка матричной РНК – причем в том месте, на которое РНК указывает с помощью тех же самых строго расположенных полярных групп, скопированных с ДНК. Эти группы подходят друг к другу, как ключ к замку (рис. 2.4). В тот же момент к малому фрагменту рибосомы присоединяется большой фрагмент – в итоге лабораторное помещение готово к работе. Все последующие процессы протекают на стыке двух фрагментов рибосомы. Назовем этот этап киносъемкой. К реагирующему центру приближается другая транспортная РНК со своей аминокислотой; две аминокислоты реагируют между собой, образуя фрагмент будущего белка. Образование связи между аминокислотами обозначено на рис. 2.4 в виде утолщенной горизонтальной черты. Можно сравнить этот процесс со съемкой определенного фрагмента из грядущего фильма. Затем рибосома продвигает матричную РНК, как транспортерную ленту, на один шаг, чтобы третья транспортная РНК с новой аминокислотой могла подойти к следующему участку. Прибывшая аминокислота реагирует с уже имеющимся фрагментом будущего белка, удлиняя его цепь на одно звено. В определенном месте на матричной РНК находятся специальные полярные группы, к которым не может «пристроиться» ни одна транспортная РНК. Эти группы указывают на то, что удлинение цепи необходимо завершать. После того как белковая цепь достигнет нужной длины, она отсоединяется от «монтажного устройства», рибосома возвращается в исходное состояние и вновь оказывается готовой к получению очередного белка. На выходе получается полимерная молекула белка – образно говоря, «кинолента». Рибосому, работающую как лентопротяжный механизм, можно назвать кинематографическим термином «монтажная». Одна и та же рибосома может синтезировать самые разные белки, необходимы лишь соответствующая матрица, то есть матричная РНК, и строительный материал – аминокислоты, подвозимые специальным транспортом – транспортными РНК. Работает рибосома очень быстро, собирая за одну секунду участок цепи из 10–15 аминокислот, причем исключительно аккуратно, не допуская ошибок при сборке молекулы из сотен звеньев. Полный синтез белковой молекулы проходит приблизительно в течение одной-полутора минут. В процессе жизнедеятельности организма белки постоянно расходуются и потому регулярно воспроизводятся рибосомой по описанной схеме.
Выяснение принципа работы рибосом ознаменовало важный этап в развитии науки, поскольку синтез белка – это основной процесс жизнедеятельности. Однако значимость работы, отмеченной Нобелевской премией, этим не исчерпывается. Результаты исследования имеют конкретное прикладное значение при борьбе с болезнетворными бактериями. Авторам удалось создать трехмерные модели, которые показывают, как различные антибиотики взаимодействуют с рибосомами некоторых бактерий. Выяснилось, что лекарственные препараты – антибиотики – блокируют некоторые рабочие узлы в рибосомах бактерий. Очень важным оказалось следующее обстоятельство: рибосомы высших организмов – например, человека – намного сложнее, чем те, что у бактерий. Благодаря этому лекарство может повреждать рибосомы болезнетворной бактерии, не причиняя вреда рибосомам человека. Большая группа антибиотиков действует именно на бактерий – например, тетрациклин препятствует взаимодействию транспортной РНК с рибосомой, а эритромицин блокирует взаимодействие двух оказавшихся рядом аминокислот. Если какой-то узел в машине по производству белка сломан, то гибнет и сам организм, то есть бактерия.
К сожалению, до сих пор использование антибиотиков не обеспечивало стопроцентного успеха, поскольку бактерии постоянно видоизменяются, образуя новые формы – штаммы, устойчивые к антибиотикам. Теперь, когда принципы работы рибосом понятны, поиск новых антибиотиков и изучение механизма их действия поднимают современную фармакологию на новый уровень. Есть все основания полагать, что открытия нобелевских лауреатов помогут найти неизвестные ранее эффективные антибиотики.