Необычайный коммерческий успех нейлона привлек внимание других стран – в первую очередь Германии, где химия была высокоразвитой. Патент на производство нейлона принадлежал американской фирме DuPont, и потому производство этого полимера другой фирмой и тем более в другой стране требовало соответствующих выплат владельцам патента. Германия же очень быстро, буквально в тот же год, когда в США в продаже появились нейлоновые чулки, нашла оригинальное решение. Немецкий химик П. Шлак предложил иной способ получения полиамида, имеющего точно такой же состав, как у нейлона. Исходным соединением был циклический амид капроновой кислоты, называемый капролактамом. Поясним название. Капроновая кислота С5Н11С(=О)ОН получила свое название потому, что содержится в жире козьего молока (лат.
Состав капрона (количество всех атомов в элементарном звене полимера) действительно совпадает с составом нейлона, но главное заключается в другом. Если бы Германия предложила иной способ получения нейлона с тем же строением, то запатентовать такой полиамид вряд ли получилось бы. Важно, что строение – то есть порядок расположения атомов – различно. Сравните строение цепи нейлона и капрона (рис. 1.22).
В нейлоне путь от одной группы NH до такой же ближайшей группы проходит исключительно по цепочке из – CH2-групп, а при движении между этими группами в капроне неизбежно «встретится» группа C=O. Иными словами, получается, что фрагменты диамина и дикарбоновой кислоты соединены в нейлоне по принципу «голова к голове» и «хвост к хвосту», а в капроне – «голова к хвосту» (рис. 1.30). Именно это различие в строении позволило Германии организовать независимое производство практически такого же полиамида. Области применения нейлона и капрона совпадают, однако капрон размягчается при более низкой температуре и потому более удобен в переработке.
В середине 1960-х гг. фирма DuPont вновь сумела всколыхнуть полимерную химию. Решая задачу разработки волокна с повышенной прочностью, которое могло бы вытеснить стальной корд в автомобильных шинах, химик-исследователь Стефани Кволек заменила в структуре нейлона цепочки из метиленовых групп – СН2– бензольными ядрами, и полученный ароматический полиамид получил название «кевлар» (рис. 1.23).
Кевлар устойчив к воздействию химических веществ, не горит, не размягчается при нагревании и начинает разлагаться только при температуре 430–480 оC. Прядение волокон производят из раствора (обычно в серной кислоте). Волокно из кевлара в семь раз прочнее стального волокна, причем с понижением температуры его прочность увеличивается. Такие волокна добавляют в оптоволоконный кабель, поскольку нить предотвращает его растяжения и разрывы по всей длине кабеля. Ткань из кевлара невозможно порвать, порезать или растянуть, из нее делают перчатки и защитные вставки в спортивную одежду для мотоспорта или сноубординга. Самый известный способ применения – изготовление бронежилетов, и, разумеется, кевлар применяют в той области, для которой он и создавался, – им заменяют тяжелый стальной корд в автомобильных шинах (кордом называют прочные нити, которые встроены в полимерный материал шины для увеличения прочности).
Щедрый этилен и его потомки
Вероятно, каждый знает, что такое полиэтилен: он необычайно распространен в быту, и его получают полимеризацией этилена (рис. 1.24).
Индекс "n" показывает, сколько звеньев находится в цепи полимера: эту величину называют степенью полимеризации. Она может меняться в широком диапазоне – от десятков тысяч до миллионов.
Не так-то просто добиться того, чтобы этилен начал полимеризоваться. Это происходит при весьма высоком давлении 2000–3000 атм и температуре 200–300 ℃. Промышленное оборудование, выдерживающее подобные условия, было создано далеко не сразу. Самое интересное, что уже достаточно давно этилен "подсказывал" ученым, как можно облегчить полимеризацию его двойной связи. Эту связь можно "расшевелить", заменив один атом водорода какой-нибудь органической группой, немного оттягивающей от нее электроны. И довольно давно ученые обратили внимание на две подсказки: замена атома водорода фенильной группой Ph приводит к стиролу CH2=CHPh, а замена хлором – к винилхлориду CH2=CHCl, (группу CH2=CH– называют винильной). Стирол легко полимеризуется на свету, образуя плотную прозрачную массу, что было обнаружено в 1840-х гг. Точно так же винилхлорид склонен к самопроизвольной полимеризации на свету. Естественно, оба эти соединения стали первыми в классе веществ, способных полимеризоваться.
Лучший изолятор