Читаем Кварки, протоны, Вселенная полностью

Однако обнаружить антинуклоны оказалось дело очень трудным. Если не считать пяти военных лет, когда европейским и американским физикам было не до частиц, то для открытия антипротона и антинейтрона потребовалось около двух десятков лет. Мощных ускорителей частиц не было ни в 30-х, ни в 40-х годах, и существенным источником тяжелых античастиц могли быть только космические лучи. В разных странах один за другим ставились эксперименты — на поверхности земли, на самолетах и высотных шарах-зондах. Были открыты новые элементарные частицы, неизвестные ранее ядерные реакции, но антипротоны и антинейтроны не встречались никому.

Теперь мы знаем, в чем дело. В готовом виде тяжелых античастиц в космических лучах нет (точнее, они попадаются очень редко). Античастицы рождаются в ядерных реакциях при прохождении космических лучей сквозь атмосферу или при взаимодействии этих лучей с веществом физических приборов. Для этого требуете в 5—6 тысяч раз больше энергии, чем для рождения позитрона. Но космических частиц с такой большой энергией чрезвычайно мало. Кроме того, каждая такая частица, подобно камню, брошенному с горы, создает разветвленную лавину вторичных частиц, среди которых очень трудно заметить антипротон, а тем более незаряженную частицу — антинейтрон.

Все это стало известно значительно позже, а 30—40 лет назад неудачи поисков антипротона и антинейтрона не находили никакого объяснения. С течением времени этот вопрос становился все более острым. Не имея на него ответа, нельзя было развивать физику элементарных частиц. Некоторые ученые, рассматривая неудачу экспериментов как выражение какого-то нового за-кона, стали даже разрабатывать теории, которые обосновывали отсутствие тяжелых античастиц в природе.

Открыли антипротон только в 1955 г. после того как в Калифорнии был запущен бэватрон — гигантский по тем временам ускоритель частиц, рассчитанный на энергию в 6 с половиной миллиардов электронвольт. Через полгода был открыт и антинейтрон.

Проходя сквозь вещество, антипротон и антинейтрон аннигилируют — взрывают и себя, и встретившиеся им на пути протон или нейтрон. Только характер этих взрывов оказывается совсем не таким, как при столкновении позитрона с электроном.

Электрон и позитрон — источники электромагнитного поля; это поле остается и после их аннигиляции. Протон, нейтрон и их «антипартнеры» связаны со значительно более сильным мезонным полем. Здесь полного «сгорания» вещества не происходит, часть его превращается в массу осколков. Тем не менее даже с учетом несгоревших «шлаков» энергия антипротонного и антинейтронного взрывов в несколько тысяч раз больше энергии, выделяющейся при аннигиляции легких частиц — электрона и позитрона. Это самое мощное выделение энергии, которое мы можем осуществить в лабораторных условиях.

«Антипартнеров» имеют не только протон, нейтрон и электрон. Они есть у всех элементарных частиц. Некоторые, например не имеющий электрического заряда пи-ноль-мезон ° или квант света фотон, совмещают частицу и античастицу в одном лице. Но таких «двуполых» частиц немного. Как правило, частицы и античастицы сильно различаются по своим свойствам. Получается так, что в природе действует замечательное правило симметрии: природа состоит как бы из двух налагающихся друг на друга половинок—мира и антимира.

Одно обстоятельство, однако, с самого начала вызывало серьезное беспокойство физиков. Введенное Дираком море отрицательных энергий позволяло наглядно трактовать различные процессы с античастицами, но само оставалось принципиально невидимым. Составляющие его частицы с отрицательной энергией, подобно мнимым числам, существовали лишь в теории, на практике же наблюдать их было нельзя, даже косвенно. Закрадывалось подозрение, что это всего лишь приближенный способ описания новых явлений на языке привычных нам физических образов.

В физике такое случается нередко. Вспомним, например, о теплороде, которому посвятили столько работ физики XVIII в. Сегодня каждый школьник знает, что тепло связано с движением молекул и атомов, и никакого теплорода не существует. Но когда о молекулярном строении вещества еще не было известно, теплород был очень удобным физическим образом для того, чтобы наглядно представлять себе механизм передачи тепла. С его помощью французский инженер Сади Карно открыл основные законы термодинамики. Наглядные модели типа теплорода, упругих силовых линий в электродинамике, летучего флогистона в химии и тому подобного — это своего рода леса вокруг строящегося здания теории. Время идет, и сослужившие свою службу модели и идеи становятся лишь достоянием истории.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука