С момента открытия в годы Первой мировой войны Института теоретической физики основным оборудованием в нем были бумага и карандаш, доска и мел, а также постоянно пополнявшийся книжный и журнальный фонд. В 1930-х Бор реорганизовал свое учреждение и превратил его также в экспериментальный центр ядерной физики первого порядка.
Успех первого ускорителя частиц Кокрофта и Уолтона в Кембридже подстегнул сооружение других ускорителей и развитие новых технологий во многих центрах физики во всем мире. Бор решил, что Копенгаген не может отстать в этой набирающей обороты гонке. Благодаря авторитету и административным способностям Бор получил финансирование, достаточное для строительства не одного, а трех ускорителей: двух линейных и одного циклического, или циклотрона.
Смысл ускорителей был не только в изучении ядерной физики на более глубоком уровне, но и в производстве радиоактивных изотопов для медицинских целей. И именно так сложился симбиоз биологии с физикой в Институте Бора.
Дьёрдь де Хевеши, с которым Бор уже сотрудничал в Манчестере, отвечал за развитие биологической части ядерного проекта. Идея заключалась в создании радиоактивных изотопов низкой интенсивности для использования в качестве маркеров в тканях и органах.
Циклотрон Калифорнийского университета, 1939 год.
Радиоактивность всегда рассматривали как форму проникающей энергии, с помощью которой можно сжигать и разрушать недоступные ткани. Так, вскоре радиоактивность более или менее успешно была направлена на борьбу с раком. Хевеши рассуждал иначе и занялся производством радиоактивных материалов, химические и биологические свойства которых были хорошо известны. Энергия излучения этих веществ должна быть очень низкой, но достаточной для обнаружения с помощью очень чувствительных приборов. Получив эти изотопы, их вводили в тело живого существа и прослеживали маршрут благодаря радиоактивности. С помощью этого метода можно было обнаружить, например, препятствия, вероятные признаки аномалии, порока развития или опухоли.