Гейзенберг верил, что его будущее неразрывно связано с тем, что контролирует территорию атомов: частицы или волны, прерывность или непрерывность. Он хотел опубликовать эту работу как можно скорее и бросить вызов утверждению Шредингера, что матричная механика
Двадцать второго марта 1927 года Гейзенберг отправил статью “О наглядном содержании квантово-теоретической кинематики и механики” в “Цайтшрифт фюр физик” — любимый журнал теоретиков, занимающихся квантовой физикой60. “Я поссорился с Бором”, — написал он Паули двумя неделями позже61. “Гиперболизируя ту или иную сторону вопроса, — возмущался Гейзенберг, — можно много говорить, но не сказать ничего нового”. Гейзенберг был уверен: со Шредингером и его волновой механикой он разобрался раз и навсегда. Но теперь ему предстояло встретиться с гораздо более сильным оппонентом.
Пока Гейзенберг в Копенгагене был занят анализом следствий из принципа неопределенности, на лыжных склонах Норвегии Бор пришел к принципу дополнительности. Для него это была не просто очередная теория или малозначимое утверждение, а необходимая концептуальная основа, которой до сих пор так не хватало для описания странной картины квантового мира. Бор верил, что дополнительность может разъяснить и парадоксальную природу корпускулярно-волнового дуализма. Волновые и корпускулярные свойства электронов и фотонов, материи и излучения и были взаимно исключающими, но дополняющими друг друга проявлениями одного и того же явления. Волны и частицы были двумя сторонами одной и той же медали.
Дополнительность умело обходит трудности, возникающие из-за необходимости использовать для описания неклассического мира два абсолютно несовместимых классических понятия: волны и частицы. Согласно Бору, для полного описания квантовой реальности необходимы и частицы, и волны. Каждое из описаний само по себе верно частично. Фотоны рисуют одну картину распространения света, волны — другую. Они существуют рядом. Но имеются ограничения, позволяющие избежать противоречий. В данный момент наблюдатель может видеть только одну картину. Никогда ни один эксперимент не сможет одновременно зафиксировать и частицы, и волны. Бор утверждал, что “одной картины недостаточно, чтобы осмыслить сведения, полученные в разных условиях, они должны рассматриваться как
Бор увидел в соотношениях неопределенности,
Исправляя расчеты Гейзенберга, относящиеся к мысленному эксперименту с микроскопом, Бор понял: то же самое можно сказать и о соотношениях неопределенности. Это открытие навело его на мысль, что принцип неопределенности показывает, до какой степени два дополняющих друг друга, но взаимоисключающих классических понятия (либо частица и волна, либо импульс и координата) могут, не приводя к противоречиям, использоваться в квантовом мире одновременно63.