Читаем Курс теоретической астрофизики полностью

Иванов-Холодный Г. С., Никольский Г. М. Солнце и ионосфера.— М.: Наука, 1969.

Шкловский И. С. Физика солнечной короны.— М.: Физматгиз, 1962.

Железняков В. В. Радиоизлучение Солнца и планет.— М.: Наука, 1964.

Гинзбург В. Л. Распространение электромагнитных волн в плазме. М.: Физматгиз, 1960.

Каплан С. А., Пикельнер С. Б., Цытович В. Н. Физика плазмы солнечной атмосферы.— М.: Наука, 1977.

Parker Е. N. Interplanetary dynamical processes.— 1963 (русский перевод: Паркер Е. Н. Динамические процессы в межпланетной среде.— М.: Мир, 1965)

Глава IV АТМОСФЕРЫ ПЛАНЕТ

Как известно, планеты светятся вследствие отражения ими солнечного излучения. В планетных атмосферах происходит сложный процесс многократного рассеяния света, в результате которого лучистая энергия частично испытывает истинное поглощение (т.е. переходит в другие формы энергии), а частично выходит из атмосферы наружу. По излучению, диффузно отражённому планетной атмосферой, мы можем судить об оптических свойствах атмосферы и о физической природе составляющих её частиц.

Атмосферы некоторых планет (например, Венеры и Юпитера) обладают очень большой оптической толщиной и сквозь атмосферу не видна поверхность планеты. Другие планеты (например, Марс) окружены атмосферами малой оптической толщины. В этом случае путём изучения свечения планеты можно получить сведения не только об атмосфере, но и о поверхности планеты.

В настоящей главе в основном излагается теория многократного рассеяния света в планетных атмосферах вместе с её применениями к отдельным планетам. При этом используются результаты фотометрических и спектроскопических наблюдений планет. Более подробно упомянутая теория изложена в специальных работах [1]—[3].

В последнее время были получены весьма ценные сведения о планетах при наблюдении с помощью космических аппаратов. Большой интерес представляют также результаты исследования радиоизлучения планет. Об этих результатах будет кратко сказано в конце главы.

§ 19. Рассеяние света в планетных атмосферах

1. Основные уравнения.

Вследствие малости толщины атмосферы по сравнению с радиусом планеты приближённо можно считать, что атмосфера состоит из плоскопараллельных слоёв. Вместе с тем можно принять, что атмосфера освещена параллельными солнечными лучами. Угол падения солнечных лучей на атмосферу в данном месте мы обозначим через θ₀, а освещённость перпендикулярной к ним площадки — через 𝑛𝐹. Наша задача будет состоять в нахождении интенсивности излучения, выходящего из атмосферы в разных направлениях после процесса многократного рассеяния в ней.

Для решения поставленной задачи мы должны воспользоваться уравнением переноса излучения. Как было показано в § 1, в случае плоскопараллельных слоёв это уравнение имеет вид

cos

θ

𝑑𝐼

𝑑𝑧

=-

α𝐼

+

ε

,

(19.1)

где 𝐼 — интенсивность излучения, α — коэффициент поглощения, ε — коэффициент излучения, 𝑧 — высота над поверхностью планеты, θ — угол между направлением излучения и нормалью к атмосферным слоям (рис. 24). Величины 𝐼, α и ε зависят от частоты излучения, но для упрощения записи индекс ν мы опускаем.

Рис. 24

Входящая в уравнение (19.1) величина ε обусловлена рассеянием света, происходящим в элементарном объёме. Мы будем считать, что из общего количества лучистой энергии, поглощённой в этом объёме, рассеивается им доля λ. В таком случае величина λα будет представлять собой коэффициент рассеяния, а величина (1-λ)α — коэффициент истинного поглощения. Вообще говоря, вероятность рассеяния излучения в разные стороны неодинакова. Мы обозначим через 𝑥(γ)𝑑ω/4π вероятность рассеяния излучения в направлении, образующем угол γ с направлением падающего на объём излучения, внутри телесного угла 𝑑ω. Величина 𝑥(γ) называется индикатрисой рассеяния. Если рассеяние излучения происходит с одинаковой вероятностью во все стороны, то 𝑥(γ)=1. Индикатриса рассеяния в этом случае называется сферической.

Чтобы получить выражение для величины ε, рассмотрим элементарный объём с единичной площадью основания и толщиной 𝑑𝑧, находящийся на высоте 𝑧. Этот объём освещён как излучением, приходящим непосредственно от Солнца, так и излучением, рассеянным атмосферой. Обозначим через τ оптическую глубину данного объёма, т.е. положим

τ

=

𝑧

α(𝑧)

𝑑𝑧

.

(19.2)

Тогда количество энергии, падающее на объём непосредственно от Солнца, будет равно π𝐹 exp(-τ sec θ₀)cos θ₀. Из этого количества энергии поглощается объёмом доля α 𝑑𝑧 θ₀, а из неё рассеивается им под углом γ к направлению солнечного излучения в телесном угле 𝑑ω доля λ𝑥(γ) 𝑑ω/4π. Поэтому для коэффициента излучения, обусловленного рассеянием первого порядка, находим

ε₁

=

λ

4

α𝐹

𝑥(γ)

exp

sec θ₀

.

(19.3)

К выражению (19.3) надо добавить ещё член, происходящий от рассеяний высших порядков. В результате для полного коэффициента излучения получаем

ε

=

λα

𝐼𝑥(γ')

𝑑ω'

+

λ

4

α𝐹

𝑥(γ)

exp

sec θ₀

,

(19.4)

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука