Читаем Курс теоретической астрофизики полностью

𝑑𝑉

,

(29.24)

где мы заменили 𝑛 на 𝑛𝑒 так как интегрирование, по существу, распространяется только на ионизованную область, а в ней 𝑛𝑒≈𝑛⁺≈𝑛. Но интеграл в правой части этого соотношения есть полное число ионов водорода в оболочке, а интеграл в левой части — полное число рекомбинаций на все уровни, начиная со второго. Последнее же число равно числу бальмеровских квантов, излучаемых оболочкой за 1 с. Следовательно, мы имеем

𝑡

𝑁

Ba

=

𝑁⁺

.

(29.25)

Формула (29.25) по наблюдённым значениям величин 𝑡 и 𝑁Ba позволяет определить величину 𝑁⁺ для любого момента времени 𝑡. Применяя эту формулу к моменту вторичного максимума блеска, мы получаем полное число атомов водорода в оболочке (если считать, что к этому моменту во всей оболочке 𝑛⁺≫𝑛₁). При помощи формулы (29.25) было найдено, что в оболочке Новой Геркулеса полное число атомов водорода равно 1,4⋅10⁵², а значит, её масса равна 2,3⋅10²⁸ г.

Формула (29.23) определяет изменение с течением времени не только интенсивностей линий водорода, но и интенсивностей линий других атомов, возникающих в результате фотоионизаций и рекомбинаций. Иначе ведут себя запрещённые линии, свечение в которых возбуждается электронным ударом, так как интенсивности этих линий существенно зависят от электронной температуры оболочки.

Как мы видели в § 23, уровень электронной температуры определяется в основном энергией, получаемой свободными электронами при фотоионизациях, и энергией, теряемой ими при столкновениях. Так как при малой плотности вещества в оболочке столкновения происходят редко, то установление равновесной температуры может затянуться на длительное время. Решение задачи об изменении электронной температуры оболочки с течением времени позволило интерпретировать поведение запрещённых линий в спектре Новой Геркулеса в тот период, когда в оболочке отсутствовало лучистое равновесие (см. [2]).

6. Новые звёзды через много лет после вспышки.

Через несколько десятков лет после вспышки оболочка новой в значительной мере рассеивается и блеск звезды становится близким к тому, какой она имела до вспышки. Изучение звезды в этот период (возможное только с помощью самых крупных телескопов) привело к очень интересным результатам. Особенно большое значение имеет открытие двойственности некоторых новых, что даёт возможность определить их массы.

Впервые двойственность была обнаружена у Новой Геркулеса 1934 г. (Уокером в 1954 г.). Наблюдения показали, что звезда является затменной переменной с периодом 4 часа 39 минут. В главном минимуме блеска холодная звезда закрывает горячую звезду (которая, по-видимому, и вспыхивает в виде новой). Отсутствие сведений о холодной звезде не позволяет точно определить массы компонент; по всей вероятности, масса горячей звезды составляет около 0,25 массы Солнца.

В спектре Новой Геркулеса в рассматриваемый период наблюдаются эмиссионные линии, возникающие частично в очень разрежённой оболочке, выброшенной при вспышке 1934 г., и частично в более плотной оболочке, окружающей звезду. Спектр последней оболочки существенно меняется вместе с фазой затмения. Изучение изменений этого спектра показало, что упомянутую оболочку можно представить себе в виде «диска», вращающегося вокруг горячей звезды со скоростью порядка 500 км/с. По-видимому, этот «диск» образуется в результате истечения вещества из холодной звезды. По распределению энергии в непрерывном спектре было найдено, что температура горячей звезды около 80 000 K. Радиус звезды, определённый на основании температуры и светимости, оказывается близким к радиусам белых карликов. Удивительной особенностью горячей звезды является тот факт, что она испытывает небольшие колебания блеска с очень строгим периодом, равным приблизительно 71 секунде.

После обнаружения двойственности Новой Геркулеса 1934 г. были подробно исследованы и некоторые другие звёзды, вспыхивавшие в виде новых, и все они оказались входящими в двойные системы. На этом основании было высказано предположение, что двойственность звезды — необходимое условие вспышки (см. [10]).

В качестве конкретного механизма вспышки принимается аккреция вещества на белый карлик от холодной звезды. Так как в белых карликах содержится очень мало водорода, то в них почти не происходят ядерные реакции. Когда же на белый карлик падает вещество от холодной звезды, то у него образуется оболочка, богатая водородом. Постепенно масса оболочки возрастает, а с ней растёт и температура её глубоких слоёв. По достижении массой критического значения (порядка 10²⁹ г) в этих слоях начинаются ядерные реакции, преобразующие водород в гелий. В результате происходит взрыв, приводящий к отделению оболочки от звезды. После сбрасывания одной оболочки начинается наращивание другой, а затем и она сбрасывается. Так объясняется многократность вспышек звезды в виде новой.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука