Читаем Курс теоретической астрофизики полностью

Изложенные качественные соображения подтверждаются соответствующими расчётами. Они основаны на использовании формул Больцмана и Саха, определяющих степень возбуждения и ионизации атомов. Как мы помним, эти формулы имеют вид

ni

n

=

gi

g

exp

-

-i

kT

,

(14.1)

n

e

n

n

=

f

exp

-

kT

,

(14.2)

где

f

=

g

g

2(2mkT)^2/^3

h^3

.

(14.3)

Именно в результате применения формул (14.1) и (14.2) к звёздным атмосферам Саха в 1921 г. объяснил спектральную классификацию.

Применим указанные формулы к вычислению зависимости эквивалентной ширины линии от температуры. Как и выше, рассмотрим линию, возникающую при переходе электрона из возбуждённого состояния нейтрального атома. При принятии модели Эддингтона эквивалентная ширина линии будет тем больше, чем больше отношение ni/, где ni, — число атомов в i-м состоянии в 1 см^3 и — объёмный коэффициент поглощения в непрерывном спектре (см. §12). Представим величину в виде

=

,

(14.4)

где — коэффициент поглощения, рассчитанный на единицу массы, и — плотность. Обозначим далее через q долю данного элемента в общей плотности , т.е. положим

q

=

m

a

n

,

(14.5)

где n — полное число атомов данного элемента в 1 см^3, а ma — масса одного атома. При помощи (14.4) и (14.5) получаем

ni

=

q

ma

ni

n

.

(14.6)

Будем считать, что n=n+n, т.е. пренебрежём числом возбуждённых атомов, а также числом дважды ионизованных атомов. Тогда, пользуясь формулами (14.1) и (14.2), находим

ni

=

q

ma

gi

g exp

-

-i

kT

1 +

f

ne exp

-

kT

.

(14.7)

Эта формула и выражает зависимость величины ni/ от температуры T. При помощи кривой роста, связывающей эквивалентную ширину линии W и величину ni/, мы можем найти также зависимость W от T.

Аналогичные формулы могут быть получены и для линий ионизованных атомов.

Из сказанного вытекает, что по виду звёздного спектра (точнее говоря, по эквивалентным ширинам линий поглощения) может быть определена температура звёздной атмосферы. Такая температура называется ионизационной.

Для определения ионизационных температур Фаулер и Милн предложили следующий способ. Пользуясь формулой (14.7), найдём ту температуру, при которой величина ni/ (а значит, и величина W) имеет максимум, и припишем эту температуру звезде того спектрального класса, в котором данная линия действительно достигает наибольшей эквивалентной ширины. Считая, что =const и pe=nekT=const, из формулы (14.7) получаем для определения ионизационной температуры следующее уравнение:

p

e

=

i+(/)kT

-i

fkT

exp

-

kT

.

(14.8)

Названные авторы, решив уравнение (14.8) (и аналогичные уравнения для линий ионизованных атомов) относительно T и сопоставив найденные значения T с данными наблюдений, получили шкалу ионизационных температур. Часть их результатов приведена в табл. 16. В ней для всех звёзд принято pe=10 атм.

Таблица 16

Ионизационные температуры звёзд

Спектральный

класс

Максимум

линии

Ионизационная

температура, K

K5

Na, 1^2P-m^2D

 3

900

G5

Mg, 1^3P-m^3S

 5

250

G0

Ca II, 1^2T-m^2P

 6

290

A0

H

, серия Бальмера

10

000

B2

He, 2^3P-m^2D

16

100

B1

Si III, O II

19

000

O5

He II, 4686

, серия Пикеринга

35

000

Однако найденные указанным способом ионизационные температуры лишь грубо соответствуют действительности. На самом деле величина ni/ зависит не только от температуры T, но и от параметров и ne. В свою очередь эти параметры выражаются через температуру T и ускорение силы тяжести g. Поэтому и эквивалентная ширина линии зависит не только от T, но и от g. Разумеется, величина W зависит от T гораздо сильнее, чем от g, что и объясняет существование линейной последовательности звёздных спектров в первом приближении. Но и зависимость W от g также должна приниматься во внимание.

2. Влияние ускорения силы тяжести на спектр.

При помощи формулы (14.7) можно построить графики, дающие эквивалентную ширину линии W в виде функции от температуры T. Эти графики различны для разных значений ускорения силы тяжести g (вследствие зависимости величин и ne не только от T, но и от g). При этом оказывается, что чем больше g, тем большая температура требуется для достижения линией максимальной эквивалентной ширины.

В атмосферах звёзд-гигантов значения g гораздо меньше, чем в атмосферах звёзд-карликов. Поэтому при данной эквивалентной ширине линии температура гиганта должна быть ниже температуры карлика. Иными словами, звёзды-гиганты должны быть холоднее звёзд-карликов того же спектрального класса. Этот теоретический вывод качественно подтверждается результатами наблюдений. Однако найденные из наблюдений различия в спектрах гигантов и карликов гораздо больше тех, которые предсказываются теорией, основанной на применении формулы (14.7) и аналогичной формулы для n/. В значительной мере это объясняется тем, что изменение ускорения силы тяжести сказывается на эквивалентной ширине линии не только благодаря изменению степени ионизации атомов, но также вследствие изменения роли эффектов давления, которые непосредственно влияют на ширину линии.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука