Читаем Курс истории физики полностью

Эйнштейн интерпретирует эту формулу следующим образом: «Монохроматическое излучение малой плотности (в пределах области применимости закона излучения Вина) в смысле теории теплоты ведет себя так, как будто оно состоит из независимых друг от друга квантов энергии величиной Rβν/N». Заметим, что величина β в современных обозначениях равна β=h/k, где k = R/N, и, таким образом, энергия кванта (Rβν/N)=hν

Эйнштейн применяет свою теорию к явлению люминесценции и не только дает объснение правила Стокса, согласно которому частота люминесценции v2 меньше или равна частоте возбуждающего излучения v1 ( v2 < v1), но и указывает на возможные причины отступления от него.

Особенно важное значение имеет объяснение Эйнштейном фотоэффекта. Квант энергии света, поглощаясь электроном, сообщает ему кинетическую энергию (R/N) βν - P, где Р - работа выхода электрона. При наличии задерживающего потенциала Я, препятствующего электрону покидать освещаемую поверхность, выполняется равенство:

П = (R/N) βν - P.

Такова знаменитая теория фотоэффекта, давшая простое и непринужденное объяснение этого явления, остававшегося загадкой для волновой теории.

Наблюдения, сделанные Ленардом в 1902 г., как указывал Эйнштейн в своей статье, не противоречили его теории. В самом деле, скорости фотоэлектронов не зависели от интенсивности световых лучей, а число их было пропорционально интенсивности. Что же касается зависимости энергии фотоэлектронов от частоты, то она была исследована лишь в 1912 г. Ричардсоном, Комптоном и в 1916 г. Милликеном. Последние классические эксперименты наряду с измерениями Милликеном элементарного заряда были удостоены Нобелевской премии.

К идее квантов Эйнштейна привел закон Вина, справедливый в области коротких волн. Ему казалось, как он писал год спустя, что «теория излучения Планка в известном смысле противостоит моей работе». Однако тщательный анализ закона Планка привел Эйнштейна к выводу, что формула Планка основана на гипотезе квантов. Этот вывод составляет содержание работы Эйнштейна 1906 г. «К теории возникновения и поглощения света». Здесь Эйнштейн показал, что в основе теории Планка лежит следующее утверждение: «Энергия элементарного резонатора может принимать только целочисленные значения, кратные величине (R/N) βν, энергия резонатора при поглощении и испускании меняется скачком, а именно на целочисленное значение, кратное величине (R/N) bv ».

Эйнштейн увидел кванты впервые именно там, где квантовая природа света выражена особенно отчетливо: в явлении фотоэффекта. Квантовый характер излучения для него был очевиден только в коротковолновой области спектра, в области применимости закона Вина. Лишь через год он понял, что кванты являются фундаментом закона Планка. Каприз исторического развития науки выразился в том, что кванты появились в физике там, где их труднее всего было увидеть, — в законе черного излучения. Эйнштейн шел к квантовой теории естественным путем и сразу понял необходимость введения квантовых представлений в теорию света. Для него сомнений Планка и других физиков, считавших гипотезу квантов временной, не существовало. Он ясно видел, что возникновение и поглощение света описывается квантовыми законами.

В работе 1906 г. Эйнштейн устанавливает количественные соотношения между рядом напряжений Вольта и пороговой частотой фотоэффекта. Это соотношение выражается формулой:

U=(R/A) βν

и для контактной разности потенциалов двух металлов, выраженной в вольтах, Эйнштейн получает следующее значение:

«В этой формуле, — пишет Эйнштейн, — содержится следующее, по крайней мере в общем и целом, справедливое утверждение: чем более электроположительным является металл, тем меньше низшая частота света, вызывающая фотоэффект».

В следующем, 1907 г. Эйнштейн применил идею квантов к теории теплоемкости. Теорема равномерного распределения энергии по степеням свободы в теории теплоемкости твердого тела приводит к закону Дюлонга и Пти, который Эйнштейн записывает в виде с = 3Rn, или с = 5,94n, где п — число атомов в молекуле. Эта формула не дает зависимости теплоемкости от температуры и не дает правильного значения теплоемкости для углерода (алмаза), бора и кремния. Эйнштейн, предположив, что молекула твердого тела является квантовым осциллятором со средней энергией

получил для удельной теплоемкости грамм-эквивалента выражение:

Таким образом, теплоемкость является функцией температуры. Она удовлетворяет закону Дюлонга и Пти только при комнатной температуре, при приближении к абсолютному нулю теплоемкость падает.

Этот вывод был экспериментально подтвержден работами Нернста и его учеников, в результате которых Нернст пришел к своему тепловому закону, названному третьим началом термодинамики. Вместе с тем оказалось, что основная предпосылка Эйнштейна о монохроматичности колебаний осциллятора неверна, и сам Эйнштейн, а также Дебай, Борн и Карман уточнили квантовую теорию теплоемкости. Но основное положение работы Эйнштейна, что энергия элементарного образования может принимать только

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука