По Минковскому, инвариантность уравнений движения механики по отношению к преобразованию осей координат и по отношению к преобразованиям Галилея означает инвариантность по отношению к преобразованию четырехмерных координат: трех пространственных координат х, у, z и координаты времени, умноженной на мнимое число. Совокупность этих четырех координат Минковский называет «миром». С точкой (х, у, z, t) связана некоторая субстанция, совокупность состояний которой образует «мировую линию». «Весь мир представляется разложенным на такие мировые линии, и мне хотелось бы сразу отметить, что, по моему мнению, физические законы могли бы найти свое наисовершеннейшее выражение, как взаимоотношения между этими мировыми линиями».
Минковский рассматривает группу преобразований координат и времени, обозначаемую им Gc, относительно которой законы природы остаются неизменными. «Систему отсчета можно еще соответственно преобразованиям названной группы Gc произвольно изменять, причем выражение закона природы меняться не будет».
Минковский дает наглядную геометрическую интерпретацию этих преобразований, вводит четырехмерные векторы, различая временно-подобные и пространственно-подобные векторы, а также собственное время мировой точки Р:
С помощью этих понятий Минковский дает четырехмерную формулировку законов механики, и в частности законов движения электрона. «В механике, переработанной таким образом, — пишет Минковский, — сами собой исчезают дисгармонии, мешавшие согласованию ньютоновской механики и современной электродинамики». И действительно, четырехмерный формализм Минковского является адекватным языком релятивистской физики, завершением построения специальной теории относительности. Дальнейшее ее развитие заключалось в решении частных задач механики, электродинамики и термодинамики на основе разработанных принципов В настоящее время теория относительности рассматривается как необходимый элемент современного физического мировоззрения. Утверждения, противоречащие теории относительности, отвергаются как неправильные. Однако в эпоху становления теории относительности такого единодушного признания ее принципов не было. У теории относительности были непримиримые враги, такие, например, как ф. Ленард и И. Штарк. Ее считали ненужной Д. Д. Томсон, его последователи Н. П. Кастерин и А. К. Тимирязев, не желавшие расстаться с привычным эфиром. Они принимали конкретные результаты, зависимость массы от скорости, связь массы и энергии и т. д., но считали, что эти результаты могут быть получены без такого радикального изменения взглядов на пространство и время, как это было у Эйнштейна и Минковского. Но как это всегда было в истории науки, противники теории постепенно уходили, а научная молодежь сразу же принимала новые принципы.
Открытие Рентгена
Конец XIX в. ознаменовался повышенным интересом к явлениям прохождения электричества через газы.
Еще фарадей серьезно занимался этими явлениями, описал разнообразные формы разряда, открыл темное пространство в светящемся столбе разреженного газа, фарадеево темное пространство отделяет синеватое, катодное свечение от розоватого, анодного.
Дальнейшее увеличение разрежения газа существенно изменяет характер свечения. Математик Плюкер (1801-1868) обнаружил в 1859 г. при достаточно сильном разрежении слабо голубоватый пучок лучей, исходящий из катода, доходящий до анода и заставляющий светиться стекло трубки, ученик Плюкера Гитторф (1824—1914) в 1869 г. продолжил исследования учителя и показал, что на флюоресцирующей поверхности трубки появляется отчетливая тень, если между катодом и этой поверхностью поместить твердое тело.
Гольдштейн (1850-1931), изучая свойства лучей, назвал их катодными лучами (1876). Через три года Вильям Крукс (1832—1919) доказал материальную природу катодных лучей и назвал их «лучистой материей» — веществом, находящимся в особом четвертом состоянии. Его доказательства были убедительны и наглядны. Опыты с «трубкой Крукса» демонстрировались позже во всех физических кабинетах. Отклонение катодного пучка магнитным полем в трубке Крукса стало классической школьной демонстрацией.