Читаем Кто придумал велосипед полностью

В рамках проекта были созданы три атомные бомбы: плутониевая «Штучка» (взорвана при первом ядерном испытании), урановый «Малыш» (сброшена на Хиросиму 6 августа 1945 года) и плутониевый «Толстяк» (сброшена на Нагасаки 9 августа 1945 года).

Бомба «Малыш» была ядерным боезарядом пушечного типа. Сомнений в работе пушечной схемы не было, поэтому её испытания на полигоне не проводились. Бомба «Малыш» была сброшена на Хиросиму 6 августа 1945 года.

Безоболочечное ядерное взрывное устройство «Штучка» на основе плутония-239 и имплозивной схемы «Вариант III» было взорвано во время испытания «Тринити» на полигоне Аламогордо в штате Нью-Мексико 16 июля 1945 года. Испытание показало, что выбранный «Вариант III» имплозивной схемы сработал и достаточно надёжен. Вариант этого устройства, оформленный в корпус авиабомбы «Толстяк», был сброшен на Нагасаки 9 августа 1945 года.

Манхэттенский проект создавался с единственной военной целью: создать атомную бомбу к лету 1945 года. Все усилия военных, учёных и инженеров были направлены на создание работающего атомного оружия. Все расчёты, опыты и исследования в области атомного ядра, ядерной энергии велись только в том направлении, которое вело к конечной цели. Все другие побочные научные изыскания, исследования и варианты отбрасывались из-за жёстких сроков и ограниченности человеческих и материальных ресурсов.

Так как Манхэттенский проект выполнил свою единственную задачу, в сентябре 1945 года после окончания Второй мировой войны Лос-Аламос стали покидать учёные, возвращаясь к своим прежним научным работам. Сменивший Роберта Оппенгеймера на посту научного директора Лос-Аламосской лаборатории Норрис Брэдбери ещё в течение года с трудом поддерживал работу лаборатории, занимая оставшихся ученых теоретическими задачами в области термоядерного синтеза и улучшениями имевшихся атомных бомб до тех пор, пока в высших политических кругах не было принято решение, что делать с атомным оружием, кто будет осуществлять контроль за его хранением и разработкой, и как будет это всё финансироваться.

Атомные часы

Национальный институт стандартов и технологий США (NIST) – подразделение Управления по технологиям США, одного из агентств Министерства торговли США. Штаб-квартира организации располагается в Гейтерсберге.

В задачу института входит «продвигать» инновационную и индустриальную конкурентоспособность США путём развития наук об измерениях, стандартизации и технологий с целью повышения экономической безопасности и улучшения качества жизни. Вместе с Американским национальным институтом стандартов (ANSI) участвует в разработке стандартов и спецификаций к программным решениям используемым как в государственном секторе США, так и имеющим коммерческое применение.

Четыре научных работника NIST получили Нобелевские премии по физике: Уильям Д. Филлипс (1997), Эрик А. Корнелл (2001), Джон Л. Холл (2005) и Дэвид Дж. Уайнленд (2012). Это наибольшее количество нобелевских лауреатов в отдельной правительственной лаборатории США. Все четыре лауреата были награждены за работы, связанные с лазерным охлаждением атомов, что имеет непосредственное отношение к разработке и развитию технологии атомных часов.

Атомные часы (молекулярные, квантовые часы) – прибор для измерения времени, в котором в качестве периодического процесса используются собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул.

Атомные часы важны в навигации. Определение положения космических кораблей, спутников, баллистических ракет, самолётов, подводных лодок, а также передвижение автомобилей в автоматическом режиме по спутниковой связи (GPS, ГЛОНАСС, Galileo) невозможны без атомных часов. Атомные часы используются также в системах спутниковой и наземной телекоммуникации, в том числе в базовых станциях мобильной связи, международными и национальными бюро стандартов и службами точного времени, которые периодически транслируют временные сигналы по радио.

С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Согласно этому определению, атом цезия-133 является стандартом для измерений времени и частоты. Точность определения секунды определяет точность определения других основных единиц, таких как, например, вольт или метр, содержащих секунду в своём определении.

Специалисты Национального института стандартов и технологий США установили мировой рекорд, доведя точность атомных часов на основе стронция до отклонения на одну секунду за 15 миллиардов лет (что приблизительно соответствует возрасту Вселенной). Точность предыдущих часов, созданных ими же в 2014 году, была в три раза меньше – отклонение составляло одну секунду на 5 миллиардов лет.

Перейти на страницу:

Все книги серии Занимательная наука (Центрполиграф)

Откуда приходят герои любимых книг. Литературное зазеркалье. Живые судьбы в книжном отражении
Откуда приходят герои любимых книг. Литературное зазеркалье. Живые судьбы в книжном отражении

А вы когда-нибудь задумывались над тем, где родилась Золушка? Знаете ли вы, что Белоснежка пала жертвой придворных интриг? Что были времена, когда реальный Бэтмен патрулировал улицы Нью-Йорка, настоящий Робинзон Крузо дни напролет ждал корабля на необитаемом острове, который, кстати, впоследствии назвали его именем, а прототип Алеши из «Черной курицы» Погорельского вырос и послужил прототипом Алексея Вронского в «Анне Карениной»? Согласитесь, интересно изучать произведения известных авторов под столь непривычным углом. Из этой книги вы узнаете, что печальная история Муму писана с натуры, что Туве Янссон чуть было не вышла замуж за прототипа своего Снусмумрика, а Джоан Роулинг развелась с прототипом Златопуста Локонса. Многие литературные герои — отражение настоящих людей. Читайте, и вы узнаете, что жил некогда реальный злодей Синяя Борода, что Штирлиц не плод фантазии Юлиана Семенова, а маленькая Алиса родилась вовсе не в Стране чудес… Будем рады, если чтение этой книги принесет вам столько же открытий, сколько принесло нам во время работы над текстом.

Юлия Игоревна Андреева

Языкознание, иностранные языки
Знаем ли мы все о классиках мировой литературы?
Знаем ли мы все о классиках мировой литературы?

…«И гений, парадоксов друг» – гений и впрямь может быть другом парадоксов своей биографии… Как только писателя причисляют к сонму классиков – происходит небожественное чудо: живого человека заменяет икона в виде портрета в кабинете литературы, а всё, что не укладывается в канон, как будто стирается ластиком из его биографии. А не укладывается не так уж мало. Пушкин – «Солнце русской поэзии» – в жизни был сердцеедом, разрушившим множество женских судеб, а в личной переписке – иногда и пошляком. Можно умиляться светлым отрывкам из недавно введённого в школьную программу «Лета Господня» Ивана Шмелёва, но как забыть о том, что одновременно с этой книгой он писал пламенные оды в поддержку Гитлера? В школе обходят эти трудности, предлагая детям удобный миф, «хрестоматийный глянец» вместо живого человека. В этой книге есть и не слишком приглядные подробности из биографий русских классиков. Их вполне достаточно для того, чтобы стряхнуть с их тел гранитно-чугунную шинель официозной иконы. Когда писатели становятся гораздо более живыми, чем на страницах учебников, то и их позитивное воздействие на нас обретает большую ценность.

Мария Дмитриевна Аксенова

Литературоведение
Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука

Похожие книги

История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия
История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости. Авторы объясняют назначение изобретений, дают подробные описания составных частей и как они взаимодействуют, сообщают основные размеры, дают представление о технологии строительства или сборки. Завершается обзор очерком о влиянии инженерии на общество, в котором утверждается, что технология должна содействовать повышению этических и эстетических ценностей.Книга богато иллюстрирована и написана простым доступным языком, не отягощенным большим количеством технических терминов и деталей.

Артур Бёрр Дарлинг , Ричард Шелтон Кирби , Сидней Уитингтон , Фредерик Гридли Килгур

История техники
Антикитерский механизм. Самое загадочное изобретение Античности
Антикитерский механизм. Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков. Только благодаря энтузиазму немногих ученых, которые не смогли пройти мимо этой загадки, удалось датировать механизм и сделать его реконструкции. Прошло больше столетия со дня этой удивительной находки, но только сейчас можно говорить о том, что ее тайна наконец раскрыта. Тем не менее работа по исследованию Антикитерского механизма продолжается и далека от завершения.О том, как был найден «первый компьютер», о людях, которые посвятили себя его изучению, и о самых удивительных механизмах в истории человечества рассказывает книга Джо Мерчант.

Джо Мерчант

История техники