Никто не может сказать, сколько человек, начиная с Ньютона, рассматривали всевозможные спектры. Несомненно, многие замечали, что окраска пламени связана с появлением в его спектре узких и ярких линий. Возможно, кто-нибудь заметил и то, что желтые линии, порождаемые поваренной солью, возникали и при внесении в пламя других солей натрия. Зеленые линии появлялись не только в присутствии металлической меди, но и при нагревании мельчайших крупинок медного купороса и других солей меди.
Кирхгоф и Бунзен после длительных опытов и раздумий пришли к твердому выводу — Тальбот прав, говоря: «Когда в спектре пламени появляются определенные линии, они характеризуют металл, содержащийся в пламени». Более того, каждый химический элемент характеризуется вполне определенным набором спектральных» линий. Эти линии являются своеобразным паспортом химического элемента. Наблюдая их в спектроскоп, можно судить о наличии в веществе данного элемента.
Так родился спектральный анализ.
Вскоре после начала совместных работ Бунзен и Кирхгоф открыли два новых элемента, которым они дали наименования цезий (от латинского «голубой») и рубидий (красный) в соответствии с цветом характерных для этих элементов спектральных линий. Открытие убедительно продемонстрировало мощь нового метода. В развитие и применение спектрального анализа включилось множество ученых.
Один за другим были открыты таллий, индий и галлий — последний предсказан Д.И. Менделеевым на основании его периодического закона.
В спектре Солнца обнаружились линии, не совпадающие с какими-либо из известных на Земле. Так люди познакомились с гелием, лишь впоследствии найденным в земных условиях. Это был триумф. Но, пожалуй, много большее научное и философское значение имел постепенно крепнувший вывод о единстве мира, проявляющемся в том, что вся вселенная состоит из одних и тех же элементов.
В 1888 году Гельмгольц писал, что открытие спектрального анализа вызвало восхищение всех людей и возбудило их фантазию в большей мере, чем какое-либо другое открытие, потому что оно позволило заглянуть в миры, представлявшиеся нам совершенно недоступными.
Постепенно оказалось, что спектральные линии элементов расположены отнюдь не хаотически, а подчиняются вполне определенным закономерностям. Стало ясно, что закономерности связаны с какими-то особенностями самих элементов. Многие спектральные линии удалось сгруппировать в серии, подчиняющиеся очень простым математическим закономерностям. Удалось обнаружить простые числовые коэффициенты, входящие в формулы для нескольких различных серий, в том числе и таких, которые относятся к различным элементам. Но что означает этот порядок? Вследствие чего он существует? Природа как бы бросала вызов ученым. Как мог пренебречь им Томсон?
Но не одной этой загадкой тревожила природа умы тех, кто еще не устал от ее сюрпризов. Здесь мы вынуждены отбросить все, что никак не связано со светом. Даже из того, что имеет к нему непосредственное отношение, недостаток места заставляет отбирать лишь самое интересное.
Одна из таких загадок восходит к Кирхгофу. Объяснение природы фраунгоферовых линий привело Кирхгофа к формулировке общего закона, суть которого проста, как просты и другие великие законы природы: способность вещества излучать пропорциональна его способности поглощать и зависит от температуры. Термодинамика, достигшая к тому времени больших успехов, позволяла утверждать, что все тела, находящиеся внутри замкнутой оболочки, должны прийти к тепловому равновесию — достичь одинаковой температуры. При этом не важны ни размеры, ни форма тел или самой оболочки, ни вещество, из которого они состоят. Не требуется и соприкосновения между ними. Равновесие будет обеспечено испускаемым и поглощаемым ими излучением.
Что, если в оболочке, в которой уже установилось тепловое равновесие, проделать небольшое отверстие? Это один из тех простых вопросов, на которые не существует простых ответов. Но если оболочка находится внутри другой замкнутой оболочки, положение упрощается. Между ними начинается обмен энергией, и постепенно их температура выравнивается. В ходе этого обмена через отверстие меньшей оболочки будет проходить излучение, переносящее избыток энергии от более нагретой части к менее нагретой. Если внешняя оболочка горячее, то поток энергии направлен из нее во внутреннюю полость меньшей оболочки, которая поглощает все излучение, как абсолютно черное тело.