«После того как я объяснил, как вытекают свойства отражения и преломления прозрачных и непрозрачных тел из наших предположений о природе света, я дам здесь весьма простой и естественный способ, позволяющий из тех же самых принципов вывести правильные формы для тел, которые посредством отражения или преломления собирают или соответственно желанию рассеивают лучи света. Правда, я еще не вижу, чтобы было можно пользоваться этими формами для преломления, с одной стороны, вследствие трудности придать с требуемой точностью нужную форму стеклам зрительной трубки, а с другой — потому, что в самом преломлении заключается одно свойство, которое, как это хорошо было доказано с помощью опытов Ньютоном, препятствует совершенно правильному соединению лучей. Все же я приведу здесь исследование этих форм, так как оно напрашивается здесь, так сказать, само собой и так как то согласие, которое здесь обнаруживается между лучом преломленным и отраженным, еще раз подтверждает нашу теорию преломления. Кроме того, может случиться, что для них в будущем будут открыты полезные применения, еще неизвестные теперь».
Дальше, простыми построениями Гюйгенс находит форму фокусирующего зеркала — параболу и получает главные свойства линз, в том числе и ранее установленные Декартом.
В приведенном отрывке содержатся две мысли, характерные для склада ума автора. Он сознавал, что точность его геометрических построений выше практических возможностей того времени. Впрочем, он достиг в шлифовке стекол высшего искусства, своими руками изготовил телескопы огромных для того времени размеров.
Второе замечание относится к Ньютону и его опытам по дисперсии. Гюйгенс безоговорочно принял ошибочный вывод Ньютона о том, что дисперсия света «препятствует совершенно правильному соединению лучей».
Впрочем, заблуждение Ньютона и Гюйгенса продержалось в науке еще много лет, пока скромный оптик Доллонд не уничтожил препятствие, казавшееся им непреодолимым. В результате многолетних трудов ему удалось достигнуть цели и, соединив линзу, изготовленную из кронгласа, с линзой из флинтгласа, получить изображение, не испорченное радужными цветами, смазывающими в обычных линзах границы изображения. Доллонд нашел форму поверхностей, при которых искажения, вносимые обеими линзами, противоположны и хорошо компенсируют друг друга.
Волновая теория света в принципе способна справиться с расчетами любых оптических приборов. Но во многих случаях необходимые вычисления оказываются чрезвычайно сложными и очень громоздкими. Могучая волновая оптика требует от ученого огромных усилий там, где примитивная геометрическая оптика указывает простой и короткий путь.
Математики не могли оставить без внимания эту странную ситуацию. Им удалось выяснить, в чем здесь дело. Оказывается, в случаях, когда размеры оптических приборов — размеры линз или зеркал, призм или диафрагм и расстояния между ними — много больше длины световых волн, законы геометрической оптики являются простым математическим следствием волновой природы света. Только более сложные проблемы, о которых уже упоминалось выше, — вопрос о минимальном расстоянии, на котором изображения двух близких точек не сливаются в одну, и некоторые другие — требуют проведения точных вычислений на основе волновой теории.