Читаем Кровь: река жизни. От древних легенд до научных открытий полностью

Под четвертым номером оказался пептид, состоящий из девяти аминокислот. Пептид расщеплялся при помощи соляной кислоты вначале на более мелкие фрагменты, а затем на отдельные аминокислоты. Те, в свою очередь, тоже разделялись и исследовались, и, наконец, Ингрэму удалось определить расположение аминокислот в четвертом пятне гемоглобина А. Он был таков: гистидин — валин — лейцин — лейцин — треонин — пролин — глутаминовая кислота — глутаминовая кислота — лизин (это названия различных аминокислот).

Расположение в гемоглобине S было следующим: гистидин — валин — лейцин — лейцин — треонин — пролин — валин — глутаминовая кислота — лизин.

Если вы сравните два списка, то увидите, что в них только одно различие. В том месте, где у гемоглобина А находится глутаминовая кислота, у гемоглобина S находится валин. Насколько нам сегодня известно, это единственное различие между двумя молекулами: несоответствие двух аминокислот из шестисот (по одной в двух одинаковых частях гемоглобина).

Один из коллег доктора Ингрэма, Джон Хаит, проделал тот же эксперимент с гемоглобином C, и в этом случае четвертое пятно оказалось другим. Его расчленили на два фрагмента. В гемоглобине C на месте глутаминовой кислоты, которая присутствовала в гемоглобине А, или валина — в гемоглобине S, оказался лизин. Поскольку фермент трипсин, используемый для расщепления молекулы на две части, атакует пептид в том месте, где находится лизин, четвертое пятно в гемоглобине С разделилось на два пептида, один из семи аминокислот и один из двух.

Теперь стало понятно, что было причиной различного поведения пептидов при электрофорезе. Глутаминовая кислота гемоглобина А несет отрицательный заряд. У валина в гемоглобине S заряда нет. Лизин в гемоглобине С имеет положительный заряд. В итоге заряды у каждого пептида различны, поэтому в электрическом поле они ведут себя по-разному.

Конечно, как и все, это громкое открытие немедленно вызвало новые вопросы. Почему такое ничтожное изменение состава молекулы гемоглобина так сильно влияет на его растворимость, устойчивость человека к малярии и тому подобное? Как гены влияют на состав молекулы? Как им удается контролировать соединение шести сотен аминокислот? И что может произойти с геном и заставить его изменить всего одну аминокислоту в молекуле белка?

<p>Глава 8</p><p>Удаление шлаков</p>

Как только благодаря гемоглобину и кровеносной системе кислород попадает в клетку, он соединяется с атомами молекул, полученных нами из пищи. В этом задействовано множество химических реакций, каждая из которых контролируется особым ферментом. В пище бесчисленное множество молекул, но в основном они состоят всего из четырех атомов: углерода, водорода, кислорода и азота. Эти четыре атома составляют 99 % всех атомов в пище.

Атомы водорода в органических соединениях (углеродсодержащие соединения, из которых состоят живые ткани и, следовательно, наша пища) легко соединяются в организме с кислородом, образуя воду. Молекула воды состоит из двух атомов водорода и одного атома кислорода. Атомы углерода в органических соединениях вступают в реакцию с кислородом и образуют углекислый газ. Молекула углекислого газа состоит из одного атома углерода и двух атомов кислорода.

Во время этих процессов происходит высвобождение энергии, так как смесь органических веществ и кислорода содержит больше энергии, чем образующиеся из нее углекислый газ и вода. Высвободившаяся во время перехода углерода от одного химического соединения к другому энергия выделяется в виде теплоты. Когда мы сжигаем уголь, нефть, природный газ, дерево, бумагу и тому подобное, углерод и водород, содержащиеся в этих материалах, соединяются с кислородом, и мы с благодарностью пользуемся полученным в результате этого теплом. Если реакция к тому же происходит быстро, то, кроме тепла, появляется и пламя.

Реакции в организме происходят намного медленнее, чем в фейерверке, и более строго контролируются. Пламя не возникает, и даже производство тепла сведено к минимуму; в основном энергия сохраняется в виде высокоэнергетических химических соединений. Они, в свою очередь, обеспечивают работу мышц, нервов, способствуют образованию сложных молекул, например белков, и тому подобное.

(Кислород, содержащийся в молекулах пищи, превращает лишь малое количество водорода и углерода в углекислый газ и воду. Для этого организму нужна дополнительная доставка его из атмосферы. Тем не менее пища вносит свой вклад в создание молекул углекислого газа и воды.)

Перейти на страницу:

Похожие книги

Аллергия, непереносимость, чувствительность. Как возникают нежелательные пищевые реакции и как их предотвратить
Аллергия, непереносимость, чувствительность. Как возникают нежелательные пищевые реакции и как их предотвратить

В этой книге доктор Ручи Гупта расскажет все о том, как возникают аллергия, непереносимость, чувствительность, как отличить одно от другого. Она поможет определить индивидуальные пищевые реакции и посоветует, как сделать максимально полезным визит к врачу: быстро получить точный диагноз и правильную схему лечения. Ручи Гупта познакомит вас с последними достижениями медицины в борьбе с пищевыми аллергиями, чтобы вы смогли выбрать то, что поможет именно вам. Она научит эффективно предотвращать нежелательные пищевые реакции дома и в путешествиях, создавать безопасное пространство, в котором можно не бояться съесть что-то не то. Эта книга также развеет мифы и заблуждения, связанные с проблемами питания. Вы узнаете, как борются с эпидемией аллергии во всем мире.Книга предназначена всем, у кого есть проблемы со здоровьем, связанные с питанием, — от повышенной чувствительности и непереносимости до серьезных аллергических реакций. А также будет интересна тем, кто хочет позаботиться о близких и помочь им найти возможность вести здоровую жизнь без страха перед едой.

Кристин Лоберг , Ручи Гупта

Медицина / Медицина и здоровье / Дом и досуг